3.10. Notation and formulas#

Description

Notation / formula

Observables (random)

\(Y=\begin{bmatrix} Y_1,Y_2,\ldots, Y_m \end{bmatrix}^T\)

Observations (realization of \(Y\))

\(\mathrm{y}=\begin{bmatrix} y_1,y_2,\ldots, y_m \end{bmatrix}^T\)

Unknown parameters (deterministic)

\(\mathrm{x}=\begin{bmatrix} x_1,x_2,\ldots, x_n \end{bmatrix}^T\)

Random errors

\(\epsilon = \begin{bmatrix} \epsilon_1,\epsilon_2,\ldots, \epsilon_m \end{bmatrix}^T\) with \(\epsilon\sim N(0,\Sigma_{\epsilon})\)

Functional model (linear)

\(\mathbb{E}(Y) = \mathrm{A} \mathrm{x}\;\) or \(\;Y = \mathrm{A} \mathrm{x} + \epsilon\)

Stochastic model

\(\mathbb{D}(Y) = \Sigma_{Y}=\Sigma_{\epsilon}\)

Estimator of \(\mathrm{x}\)

\(\hat{X}\)

Estimate of \(\mathrm{x}\) (realization of \(\hat{X}\))

\(\hat{\mathrm{x}}\)

Adjusted (or predicted) observations

\(\hat{\mathrm{y}}=\mathrm{A}\hat{\mathrm{x}}\)

Residuals

\(\hat{\epsilon}=\mathrm{y}-\mathrm{A}\hat{\mathrm{x}}\)

Estimators of \(\mathrm{x}\)#

Estimators

Formula

Least-squares (LS)

\(\hat{X}=\left(\mathrm{A}^T \mathrm{A} \right)^{-1} \mathrm{A}^T Y \)

Weighted least-squares (WLS)

\(\hat{X}=\left(\mathrm{A}^T\mathrm{WA} \right)^{-1} \mathrm{A}^T\mathrm{W} Y \)

Best linear unbiased (BLU)

\(\hat{X}=\left(\mathrm{A}^T\Sigma_Y^{-1} \mathrm{A} \right)^{-1} \mathrm{A}^T\Sigma_Y^{-1} Y \)

Test statistics (with distribution under \(\mathcal{H}_0\))#

Test statistic

Formula

Generalized likelihood ratio test

\(T_q = \hat{\epsilon}^T\Sigma_Y^{-1}\hat{\epsilon}-\hat{\epsilon}_a^T\Sigma_Y^{-1}\hat{\epsilon}_a\sim \chi^2(q,0)\)

Overall model test

\(T_{q=m-n} = \hat{\epsilon}^T\Sigma_Y^{-1}\hat{\epsilon}\sim \chi^2(q,0)\)

w-test

\(W = \frac{\mathrm{C}^T\Sigma_Y^{-1} \hat{\epsilon}}{\sqrt{\mathrm{C}^T\Sigma_Y^{-1}\Sigma_{\hat{\epsilon}}\Sigma_Y^{-1} \mathrm{C}}} \sim N(0,1)\)

Linear propagation laws if \(\hat{X}=\mathrm{L^T} Y \)#

Propagation law of the …

Formula

… mean

\(\mathbb{E}(\hat{X}) = \mathrm{L^T}\mathbb{E}(Y)\)

… covariance matrix

\(\Sigma_{\hat{X}} =\mathrm{L^T}\Sigma_Y \mathrm{L} \)

Attribution

This chapter was written by Sandra Verhagen. Find out more here.