Week 2.7 : Extreme Value Analysis

Patricia Mares Nasarre
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Welcome to... Probability is
back!!
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Today’s session — Extreme
Value Analysis (EVA)

1. Refresher (mainly week 7)
and motivation for EVA

2. Extremes, design conditions
and return period

Bernoulli process
3. Block Maxima & GEV Binomial distribution |

Poisson distribution S 2
4. POT & GPD A
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1. Retresher and motivation
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Recap of Q1 — Week 1

Deterministic vs Stochastic

Deterministic models are those which for some given inputs, always provide the same output. For instance, a
equation which gives the average concentration of CQ, in a city as function of the traffic. For a certain value
of traffic, the model will always provide the same concentration of CQO,. Therefore, these models that there
is no uncertainty. On the contrary, stochastic models are those which embrace the uncertainty. This is

Deterministic — If input is ‘a’, output will

stochastic models will produce different outputs for a given input. In fact, the inputs and outputs of always be’b’

stochastic models are probabilistic distributions (you will learn more about this later!), which relate the values S

of the variable with the probability of observing it. Stochastic — If input is ‘a’. what is the
J

And how do | choose between a deterministic and stochastic model? pro babil |ty of ‘b’

All systems, in reality, are stochastic to our eyes, since we never truly know the actual properties and inputs.
However, under certain circumstances, this stochasticity can be neglected. Let us take a look to some
examples of deterministic and stochastic systems:
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Recap of Ql — Uncertainty weeks

]
TUDelft

N

Qin

C(t)

&

Qout — g(Qin’ C(t))



Recap of Q1 — Week 7

Mpe. B

Aleatoric

= intrinsic phenomenon,;
typically associated with
variations that occur in
nature

Epistemic

= lack of knowledge; often
called model uncertainty
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Theoretical quantiles

Error

= deficiency in any stage
of modelling/simulation
not due to lack of
knowledge

Variables are NOT necessarily
Gaussian-distributed!



Recap of Q1 — PDF

= Continuous random variables

= Distribution function: Mathematical model which relates the values of a random variable and
their probability
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Joln the Vevox session

Go to vevox.app
Enter the session ID: 108-740-284

Or scan the QR code
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& 32/47 Join at: vevox.app ID: 108-740-284

Which probability functions have you used previously
in MUDE?
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— 32 Join at: vevox.app ID: 108-740-284

Which probability functions have you used previously
in MUDE?
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Recap of Q1 — PDF

= Continuous random variables

= Distribution function: mathematical
model which relates the values of a
random variable and their probability

= Probability density function (PDF) fx(z)
fx(z)de = P(z < X < z + dz)
fx(z) >0
Jo2 fx(z)de = 1
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Recap of Q1 — From PDF to CDF

= Probability density function (PDF) fx(z)

= Cumulative distribution function (CDF) F(z) = [*_ f(z)dz
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S 41/47 Join at: vevox.app ID: 108-740-284

Which probability do I obtain when evaluating the CDF
(Cumulative Distribution Function)?

I Exceedance probability, P(X>Xx) 0%
Non-exceedance probability, 0%
P(X<Xx)

Exact probability, P(X=x) 0%
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41 Join at: vevox.app ID: 108-740-284 Showing Results

Which probability do I obtain when evaluating the CDF
(Cumulative Distribution Function)?

I Exceedance probability, P(X>X) 12%
Non-exceedance probability, 83%
P(X<Xx)

Exact probability, P(X=x) 504

™
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Recap of Q1 — From PDF to CDF

= Probability density function (PDF) fx(z)

CDF of the Gaussian distribution
* Cumulative distribution function (CDF) F(z) = [*_ f(z)dz  F(z) = L (1 + erf (w—ﬂ))
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From PDF to CDF
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Recap of Ql — Exceedance
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Continuous distribution functions

Mathematical model which relates the values of a random variable and their probability

But what do | want to model?

Observations

—>

Empirical distribution function

Parametric distribution: model
Empirical distribution: observations

| want a model which is able to reproduce the probabilistic behavior in the observations
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We need to assign a non-

Empirical distribution function (ECDF) |exceedance probabilty to

each observation

#observations = 9
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Empirical distribution function (ECDF)

1.0

We need to assign a non-
exceedance probability to
each observation
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Recap of Q1 — Why i1s the tail important?
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15.0

You are designing a building against
wind loading

Which value would you use for design?

We want the building to perform in
ordinary conditions (around central
moments)

We also want the building to withstand
the storms



Recap of Q1 — Modelling the tail of the distribution

= Wednesday workshop in week 1.7 — modelling compressive strength of concrete
Exceedance plot in log-scale

1UD§ — Empirical CDF
—— Gumbel CDF
1071+
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Compressive strength [MPa]
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Focusing on the tail of the distribution: EVA

= Systems and infrastructures are typically designed and assessed for extreme
conditions.

= Extreme events are located in the tails of the distribution

= Extreme events are typically scarce: short timeseries (e.g.: 20 years) in comparison
with the design events that the system needs to withstand (e.g.: 1,000 years event).

= Extreme Value Analysis (EVA) focuses on those events located at the tails of the
distribution and provides a framework to identify and model the stochastic behavior
of extreme events so events which have not been observed can be inferred.
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2. Extreme, design conditions and return
period
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What's an extreme?

An extreme observation is an
observation that deviates from the
average observations
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Extremes are located at
the tail of the distribution!

Example: t-shirt price
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Example case: intervention in the Mediterranean coast

- It may be a coastal structure, a
water intake, the restoration of
a sandy beach, between
others.

- Here: desigh a mound
breakwater

- Mound breakwater must resist
wave storms — H,

« But which one?

]
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DeSign I'eql_]_irements Which conditions does my intervention need to withstand?

Regulations and recommendations — Exceedance probability or return period

Country Standard Tk (years) DL (years) PtoL (-)

England BS 6349-1-1:2013 50-100* 50-100 0.05*
Japan TS Ports-2009 50-100 20 0.40-0.64
Spain ROM 0.0-01/1.0-09 113-4,975 25-50 0.01-0.2

*Not well defined

But what is return

]
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Design conditions: return period

= The return period is a concept in guidelines and recommendations in the Engineering and
Geosciences field to parameterize the safety level. Then, the magnitude of the design event
IS given by a return period.

Return period is defined as is the expected time between two exceedances of extreme
events.

Wave height time series

wun

—— Significant wave height time series
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Significant wave height [m]
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Return Peri()d - Derivation Mathematical definition

We are interested in estimating, on average, the time (e.g., year®)) at which an event (here, the wave
height) higher than a given threshold, (e.g. design value), occurs.
We know that Pr(Z > z,) =1—q =p

Every year the probability of the event
being higher/lower than the threshold
IS always the same

p p p P
Zg o & i design
value
q q *** g g
H : ; H : >
1 2 3 Ce time t(years)

TU Delft () the unit time reflects the interval time in which the observations are taken

Figure from Salas, et la (2013). Journal of Hydrologic Engineering, 19(3), 554-568.



Return Period - Derivation

Every year the probability of the event
being higher/lower than the threshold
Is always the same

p p
, A S S S N SR __ design
Let's calculate the probability that an event value
z, higher than the design value z, occurs at L
time t
1 2 3 Ce time t(ye;rs)
f(t) =Pr(zgattimet) =(1—-p)1—p)..(1—p)p
Geometric Distribution
it models the number of trials up to the first success
f(t) = Pr(zg at time t) = q*1p | (included)
| T is also defined as Return
. Period (in unit time).
T(t) expectation “We have to make, on average,
T(t) = ; it will take on average 1/p trials to get a 1/p trials in order that the event
success happens once” (Gumbel)
f; or wait 1/p years before the
TU Delf'[ next occurrence 32




Design requirements

Regulations and recommendations — Exceedance probability or return period

But also Design Life and the
probability of failure during
the design life (p;p.)

Country Standard Tk (years) DL (years) PtoL (-)

England BS 6349-1-1:2013 50-100* 50-100 0.05*
Japan TS Ports-2009 50-100 50 0.40-0.64
Spain ROM 0.0-01/1.0-09 113-4,975 25-50 0.01-0.2

*Not well defined

How do they relate
to each other?
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Back to basics — Bernoulll process

Extremes can be assimilated as a Bernoulli process

"Coin Toss (3635981474)" by ICMA
Photos is licensed under CC BY-SA 2.0.

Bernoulli process Extremes

Two possible outcomes: success or failure

\/ Each observation can be an over or below

Outcomes are mutually exclusive and
collectively exhaustive

V' over vs. below the design value

Constant probability of success

V' station arity

Independence between trials

V4 Hypothesis of EVA iid events

]
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Back to basics — Binomial distribution

Extremes can be assimilated as a Bernoulli process

Number of exceedances (succeses) in a given number of trials follows a Binomial distribution
n

px(x) = P[X = x|n,p] = (x) p*(1 —p)*™* forx=20,1,..,n;p € [0,1]

px(x) = P[X = x|n,p] =0 otherwise

where

n n!
(x) ~ Xl (n—x)!

]
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Design requirements

Regulations and recommendations — Exceedance probability or return period

But also Design Life and the
probability of failure during
the design life (pp,)

Country Standard RT (years) DL (years) PtoL (-)

England BS 6349-1-1:2013 50-100* 50-100 0.05*
Japan TS Ports-2009 50-100 50 0.40-0.64
Spain ROM 0.0-01/1.0-09 113-4,975 25-50 0.01-0.2

*Not well defined
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Design requirements — Binomial distribution

Tr = 1/p;y

PipL- Pry - DL - Tg

Eachyearis atrial ——> Success (excess the design value) or failure (no excess)?

The number of exceedances (successes) in a given number of years (trials) ~ Binomial

Pt oL IS the probability of an excess at least once in the DL

PipL =1 —‘probability of no excess |
Y

—rmOQ<Z

DL
px(0) = P[X = 0IDL, p;,] = ( 0 )Pf,yO(l — pr, )P0 <

Pror=1-(1-pry°t

| L1 1
: Pry 1_(1_pf,DL)1/DL
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Design requirements — Binomial distribution

T, = = 1
R o, 1= (1= pro)/Pt
DL = 20 years ) o 1 1 o0
_ R L —1_-(1— 720 ~ 90 years
Pip. = 0.20 Pry 1—-(1-0.2)

. Py ~ 0.011
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Intermezzo — Poisson distribution

The Binomial distribution is defined as

px(z) = P[X = z|n,p] = (")p*(1 —p)"~*

If n — «~, x and p are finite and defined and p is very small, 4 = np.
After some simplifications... Poisson distribution

px(z) = P[X =zn,p] = <= forz=0,1,2,... and A > 0

px(z) =P X =z|p]| =0 otherwise

Binomial is based on discrete events, while the Poisson is based on continuous events.

That is, in Poisson distribution n—<« and p is very small, so you have an infinite humber of
trials with infinitesimal chance of success.
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Also possible with the Poisson distribution!

= v X O

]
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Q1 Topics

1. Modelling Concepts

2. Propagation of
Uncertainty

3. Observation theory
4. Numerical Modelling

5. Univariate Continuous
Distributions

6. Multivariate Distributions

Q2 Topics

1. Finite Volume Method
2. Finite Element Method
3. Signal Processing

4, Time Series Analysis
5. Optimization

6. Machine Learning

| 7. Extreme Value Analysis

7.1. Concept of Extreme

7.2. Block Maxima & GEV

7.3. POT & GPD
Peak Over Threshold
Intermezzo: Poisson
Parameters selection
Intro to GPD
Practicalities for GPD
Revisiting RT

7.4. Supplementary
Material

Y

Deriving the probability of failure along the design
life

We already saw that extremes could be assimilated as a Bernoulli process: for each year (trial), we
check if the observed value exceeds our design value (success) or not (failure). Thus, the number
of exceedances over a design value (successes) in an infinite number of years (trials) will follow
the Poisson distribution if each trial is independent and the probability of success (exceeding the
threshold) is very small.

Let's calculate the probability of observing an event z; higher than the design value 2, at least
once in DL years (ps pr).

First, we calculate the probability of not failing along DL applying the Poisson distribution.
Remember that A = np, being n the number of trials and p the probability of success.

px(0) = P[X = 0|DL,py,] = &> = e~ Ploor

The probability of failing at least once in DL can be computed as 1 — px(0) (1 - no failure), so
psor=1—px(0) =1 — e Plxrw
We defined RT' = 1/py,,, so

pspr=1— e PL/RT — 1 — ¢~ DL/RT

Rewriting it in terms of RT", we obtain

RT = —DL

In(1-pys.pr)

And now you can compute the design RT based on the DL and py,pL recommended in design
guidelines!

8-1-2025
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Break?

Please, leave the room through the door
in the ground floor.
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v

General outline of EVA e

® POT maxima

=

1. Select the extreme observations in the
timeseries

w

N

Significant wave height [m]

=

2. Build a ECDF with the observations

| lh\ Lllhhllllimi i “Mmﬂ Nlhlnhi Mnl“uhllil‘"ll

1991-01 1991-07 1992-01 1992-07 1993 01 1993-07 1994-01 1994-07 1995 01

3. Fit a parametric CDF to the ECDF (the QQ-plot '
distribution given by the method) 50
4. Check performance using GOF Jao-
5. Use the parametric CDF to infer 301
extremes we have not observed yet N4

2.5 3.0 3.5 4.0 4.5 5.0
e t Empirical quantiles



3. Block Maxima & Generalized Extreme
Value (GEV) distribution
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Time series
Can | use all the

values in the time

Wave height time series

5
—— Signific series for the
analysis?
N
£
57
| | | | |
i Wl

0 . .
1991-01 1991-07 1992-01 1992-07 1993-01 1993-07 1994-01 1994-07 1995-01
Date
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= 29/28 Join at: vevox.app ID: 108-740-284

In the given time series, which observations are
extreme and, thus, you would include in your analysis?

Wave height time series

5
—— Significant wave height time series
4_
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B 31
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2
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29 Join at: vevox.app ID: 108-740-284 Showing Results

In the given time series, which observations are
extreme and, thus, you would include in your analysis?

Wave height time series

5
—— Significant wave height time series
4 o
£ &
= [9¥e)
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We need a systematic way to sample extreme values!

Each sampling techniqgue defines a method of EVA

Wave height time series

w E

N

Significant wave height [m]

=

|

0
1991-01 1991-07

]
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1992-01

—— Significant wave height time series

iy lm..h. m hmlM i |i|n | M T

1992-07 1993-01 1993-07 1994-01 1994-07 1995-01
Date

Two techniques:

1. Block Maxima

2. Peak Over
Threshold (POT)




Sampling extremes: Block Maxima

Wave height time series

0 M illhhlllli'lm Uil nmh. M T

1991-01 1991-07 1992-01
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1992-07

1993-01
Date

1993-07 1994-01

1994-07

”n“

1995-01

1. Block Maxima
(typically block=1year)
« Maximum value
within the block

* Number of selected
events=number of
blocks recorded (e.q.:
number of years)

- Easy to implement



Generalized Extreme Value Distribution

= We are interested in modelling the maximum of the sequence X = X, ..., X,
of iid random variables, M,, = max(X, ..., X;;), where n is the number of
observations in a given block.

= We can prove that for large n, those maxima tend to the Generalized
Extreme Value (GEV) family of distributions, regardless the distribution
of X.

PIM, < x] - G(x)

]
TUDelft



Generalized Extreme Value Distribution

Generalized Extreme Value Is defined as

G(x) :ezvp—[l-l—ﬁ%]_l/'E (1+£6=£)>0

(o)

With parameters location (—oo < p < 00 ), scale (¢ >0) and shape (-0 <§ <),

10 r 0.8
‘ / f;' b Location parameter (l)
L 0.6} =] il
B f’. | 'h " J‘\ | hlfl ny I ‘\‘ . .
< MWLM lf\s Wi A ! /“ - Higher , right

PR o 1) R displacement of the

H LT A T L »' distribution, higher values.
4! A J 0

0 50 100 4 6 8 10
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Generalized Extreme Value Distribution

Generalized Extreme Value Is defined as

G(a:):ewp—[l-l—ﬁ%]_l/g (1+£=£)>0

o

With parameters location (—oo < u < oo ), scale (¢ >0) and shape (- <{ <),

15 — 1 0.8

7=05 | =05 Scale parameter (o)
—0o=135 0.6 oc=15] |
10 “ | . .
5 "| ) | t j\‘ 18- | | Higher o, wider
w’«dﬁl»\-)‘m l»';,‘1_r~.r(‘|.f',','“\.;.,.q;"~ s | distribution.
s IR A \
00 5‘0 100 00 5 >1j(~)_ - 1‘5
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Generalized Extreme Value Distribution

Generalized Extreme Value Is defined as

G(z) = exp—[1 4+ £=L]1/¢

(1+£=%)>0

With parameters location (—oo < u < oo ), scale (¢ >0) and shape (- <{ <),

Gumbel

pdf

Type |

X

&0

Exponential decay
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Fréchet

Type ll

pdf

X

$>0
Polynomial decay

Reverse Weibull

Type lll

VA

X

pdf

<0
Upper bound (u—°/;)

Shape parameter ()

Determines the tail of the
distribution.



Generalized Extreme Value Distribution

Plotting the talls...

= Gumbel: light tail

= Fréchet: heavy tall
= Reversed Weibull:

bounded at x = u —%

]
TUDelft

probability of exceedance
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: Type |
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Let's apply 1t

G(z) = exp—[1 +&E=L]7VE (14+655)>0

Wave height time series

Significant wave height [m]

Q
1991-01 1991-07 1992-01

]
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X Yearly maxima

Q I m.]x“h\ it Wi ||In Tl

1992-07 1993-01 1993-07 1994-01
Date

—— Significant wave height time series

1994-07

il

1995-01

_ 1 _1_
Tr =5 = Pry =55 = 0.011
Load: significant wave height (Tg=90

years)

20 years of hourly measurements — 20
yearly maxima samples

read observations

fit GEV(obs_max)

check fit (e.g., QQ-plot or Kolmogorov-
Smirnov test)

inverse GEV to determine the design
event




, :
Let's apply 1t
G(z) zemp—[l—kif%]_l/f (1+&=5)>0
5.5
5.0 - ¢
4.5
T °
T 4.0 ®
: S
8 35
a ®
3.0
&
2.5
2.0 . . . . . .
2.0 2.5 3.0 35 4.0 4.5 5.0

observed Hm)
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5.5

1 1
TR _p_f,y — Pry —%— 0.011

Load: significant wave height (Tz=90
years)

20 years of hourly measurements — 20
yearly maxima samples

read observations

for each year i:
obs_max][i] = max(observations in year i)
end

fit GEV(obs_max)

check fit (e.g., QQ-plot or Kolmogorov-
Smirnov test)

inverse GEV to determine the design
event




Tr =pi —ppy===0011
fy

Let's apply 1t %

- Load: significant wave height (Tx=90
G(z) = exp—[1 + 5%]_1/5 (1+&=5)>0 years)

- 20 years of hourly measurements — 20
1.0 - yearly maxima samples

—==- 90-years event

o
oo

read observations

o
o

for each year i:
obs_max][i] = max(observations in year i)
end

Exceedance probability P[X = x]
o
o

fit GEV(obs_max)

o
(¥

check fit (e.g., QQ-plot or Kolmogorov-

0.0

2.5 3.0 3.5 4.0 4.5 5.0 Smirnov test)
Hs(m)
-ifUD If Inverse GEV to determine the design
€ t event




Common mistakes - Let's talk about the ‘units’

= Daily maxima of discharges Q is performed on the observations which last
for 5 years. We have then 365x5=1,825 extremes. A GEV s fitted.

= We want to compute the discharge associated with a return period of 100
years.

G(::c) = exp—[1 A {:w;u]—ug (1+£—%)>0

]
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Common mistakes - Let’s talk about the ‘units’

= Daily maxima: ‘units’ of the probabilities in the GEV distribution?

]
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Empirical CDF

Let’s do it slowly! Lengt

1/6 = 0.17

4.5 3.2 2 2/6 = 0.33
3.8 3.8 3 3/6 =0.5
7.5 4.5 4 4/6 = 0.67
2 7.5 5 5/6 = 0.83

]
TUDelft

5 Days!

>> read observations

>> x = observations 1in

order

sort ascending

>> length = the number of observations

>> probability of not exceeding = (range
of integer wvalues from 1 to length) /
length + 1

>> Plot x versus ©probability of not

exceeding

8-1-2025 59



Common mistakes - Let's talk about the ‘units’

= Daily maxima: ‘units’ of the probabilities in the GEV distribution

days

= Return period: 100 years

T 1 1 1
_— _ — =
R Pry Pty Tr 100 years
. L 1 1 1year . —5
TR - pf,y ~ Pra = TR 100 years 365 days =2.7-10 1/days

G(z)|= exp—|1 £w;u]—1/g (1+&=)>0

]
TUDelft



Common mistakes - Let's talk about the ‘units’

= Daily maxima: ‘units’ of the probabilities in the GEV distribution

days

= Return period: 100 years

1 1 1 1 year

= = 2.7-107° 1/days
R 100 years 365 days

= Can you compute the return level of Q for y = 50,0 = 25and § = —17

]
TUDelft



Computing the return level

G(z) = exp—|1 —|—£%]_1/"E (1+£=5)>0
—ln(G(x)) = [1 + E%]_g

—ln(G(x))_g —1= Ex ; a

X = %l— ln(G(x))_E — 1] + U

x == [—In(1 - 2.7-1075)! = 1] + 50 ~ 75m?/s

]
TUDelft

u=>50,0=25and & = -1
Prg = 2.7 - 107> 1/days




4. Peak Over Threshold (POT) &
Generalized Pareto distribution (GPD)

%
TUDelft



Sampling extremes: Peak Over Threshold (POT)
2. Peak Over Threshold

W height ti i (POT)
:Eng;m;:hgm eeeee “! < Usually, higher number
K i of extremes identified
%3 - Additional parameters:
§ - Threshold (th)
E | | T T i * Declustering time (dl)
: M uIMule {ili IM.:]J. M S L

1991-01 1991-07 1992-01 1992-07 1993-01

Date

1993-07 1994-01 1994-07 1995-01

]
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Choosing POT parameters

Basic assumption of EVA: extremes are iid ——> th and dl should be chosen so the identified extreme

Wave height time series

events are independent.

Significant wave height [m]

— Significant wave height time series
e Values > threshold
== threshold = 2.5m

0 \ . . :
1992-05-01 1992-05-02 1992-05-03 1992-05-04 1992-05-05

3
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1992-05-06 1992-05-07 1992-05-08

Extremes cluster in
time!

If dl is big enough, we
ensure that extremes
do not belong to the
same storm.

dl & th, physical
phenomena (local
conditions)



POT and Poisson

Wave height time series

lwillh ML

Significant wave height [m]
T
|
|
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

I |
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

—— Significant wave height time series

i IIULIM. M w5l

1991-01 1991-07 1992-01 1992-07 1993-01 1993-07 1994-01 1994-07 1995-01

Date

Each hour is a trial (n — «)
Over or below the threshold?

Pabove 1S VEry small (tail of
the distribution)

Block = 1 year

Number of excesses in each
block over the threshold ~
Poisson

distribution.

Almost all the techniques to formally select the threshold and declustering time for
POT are based on the assumption that the sampled extremes should follow a Poisson

]
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Y
e
o

Samples: Poisson

If the number of excesses per year follows —— Sampled maxima are independent /

a Poisson distribution

1.01 Empirical cdf
0.9 -

0.8 -

0.7 -

0.6 1

0.5 -

0.4 -

0.3 1

0.2 -

—— Poisson fit —

1 2 3 4
Exceedances per year

]
TUDelft

5

=
o

o o o
I o o<

o
(N

Estimated non-exceedance probability

0.0 ! T T T
0.0 0.2 0.4 0.6 0.8 1.0

Observed non-exceedance probability

Compute the number of
excesses per year

Empirical pmf and cdf

Fit Poisson distribution using
Moments

E[X] =Var X] = A
Check the fit
«  Graphically

« Chi-squared test



Generalized Pareto Distribution

= The maximum of the sequence X = X, ..., X,, of iid random variables, M,, =
max(Xy, ..., X;,), where n is the number of observations in a given block,
follows the Generalized Extreme Value (GEV) family of distributions,
regardless the distribution of X for large n.

P[M,, < x] - G(x)

= |f that Is true, the distribution of the excesses can be approximated by a
Generalized Pareto distribution.

Fip = PIX —th < x|X > th] - H(y)
= where the excesses are defined as Y=X-th for X>th

]
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Generalized Pareto Distribution

Generalized Pareto distribution of the excesses is defined as

Oth

ik1—¢=3:1:,'{:n(—i) for =0

Oth

r -
H(y):{l—(l—l—g—) for £ #0

wherekaif{EO,andOSyS—%if§<0.

These are conditional probabilities to X>th. As function of the random
variable X and the threshold th

(

1— (1+M)1/£ for €40

Oth

k1_831}(_3:—%) foré=0

Tth

P X < z|X > th| = {

A
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Generalized Pareto Distribution

(

1
1 — (1 o ) for £ #0

P[X<m|X>th]:%1—emp(_mth) Jore=0
\ Tth

With parameters threshold (th>0), pareto’s scale (o;;, > 0) and shape (—co <& < o0).

Relationship with GEV’s parameters
= Shape parameter is the same

= g, defined based on GEV’s parameters as

o =0 +&(th — p)

]
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Generalized Pareto Distribution

(

RNV
1—(1+%) fort+0

k1_emp(_:;;—ath,) foré=0

Tth

P X < z|X > th] = %

With parameters threshold (th>0), pareto’s scale (o;;, > 0) and shape (—oco <& < o0),

o)
th=3
— th="7

- < Threshold (th)
v g Acts like a location
o ~ parameter.
j th=3 - k
— th=7
0 20 40 60 80 100 0 3 6 9 12 15
# X

\
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Generalized Pareto Distribution

(

RNV
1—(1+%) fort+0

kl_emp(_m—th) foré=0

Tth

P X < z|X > th] = %

With parameters threshold (th>0), pareto’s scale (o;;, > 0) and shape (—oc0 <& < o0),

on=0.5 0 Oy = 0.5
—— om=15 - —— op=15
2 3 Scale parameter (o)
< | g ° Higher o, wider
S \J Mwhih S K distribution.

0 20 40 60 80 100 0 1 2 3 4 5
# X

TUDelft



Generalized Pareto Distribution

P X < z|X > th] = %

(

1 —exp (—
\

z—th

Tth

RNV
1—(L+i%@) fort+0

) for£=0

With parameters threshold (th>0), pareto’s scale (o;;, > 0) and shape (—co <& < o0).

pdf
00 09 18 27 36 45

N

LR RO T

wo!

1
—

3y

0 1 2 3

TUDelft

cdf
1e-04 1e-03 1e-02 1e-01 1e+00

LT ST R T

3}

Shape parameter (§)

= §<0: upper bound

= §>0: heavy tall

« &=0 & th = 0: Exponential
« &=-1: Uniform



Let's see how to put i1t into practice

= Extremes of discharges Q are sampled with POT using th =50 m3/s and dl =
24h on the observations which last for 5 years. We have sampled 2,000
extremes. A GPD is fitted to the excesses with g;;, = 25 and & = 0.1.

= We want to compute the discharge associated with a return period of 100
years.

1—(1—|-£—"“')_1/5 for&#0

Oth

H(y) =
’ 1 —exp (—i) for =0

Oth

where the excesses are defined as Y=X-th for X>th.

]
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Let's talk again about ‘units’

= POT using th = 50 m3/s _ 1 _ 1 _
and dI = 24h Tr =5, = 100 = O-1 LUdays
* N=>5years —'Units’ of the GPD?
= ng, = 1,000 extremes ‘Event-wise’, irregular number of events per year
= GPD is fitted with oy,
=25and & = 0.1 We assume that the number of extremes per

year is Poisson-distributed.
* T, =100 years

We use the average number of excesses each

year. A = &500 = 200

1 1 1 year

= Psg =
R

Tr = =510 1/events

1
% pf y 100 years 200 events
TUDelft



Remember the threshold!

= POT using th = 50 m3/s Prg = Ti = — - - zot)yiz;ts =5 105 1/events
and dl = 24h R years e e
= N =5years Since § = 0.1( 0), H(y) =1 — (1 +j—;)_1/€
" ng, = 1,000 extremes e
= GPD is fitted with g;,, = (1 +§—y> =1 —H(y)
25and § = 0.1 "
* T, =100 years 1 +§—y =[1 —H()] ¢
th
Hy) 1— (1 + f—i)_l/g for£#£0 y = aen([1 —HS/)] —¢-1) —
1 — exp (—i) for€=0 ~25([1 — (1 —0.00005)] °1-1) 2™
B 0.1 B s

Design discharge: y +th =473~

]
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Practicalities: what's next?

%
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What's next?

= This lecture: basic theory
and how to apply it.

= Much more theory and
demonstrations in the
textbook!

= |n 7.2, asymptotic model
and domains of attraction

= In 7.3, RT&DL based on
Poisson distribution,
theory behind application
of the GPD

= In 7.4, extra material:
Bernoulli&Binomial and
videos

TUDelft

7. Extreme Value Analysis

7.1. Concept of Extreme

Return period

Sampling extremes

7.2. Block Maxima & GEV

Block Maxima

Asymptotic theorem

GEV distribution

RT & Design Life

7.3. POT & GPD

Peak Over Threshold
Intermezzo: Poisson
Parameters selection

Intro to GPD

Practicalities for GPD

Revisiting RT

7.4. Supplementary Material

Bernoulli and Binomial

EVA videos

7. Extreme Value Analysis

The preceding chapters have focused on a variety of data-driven and physics-based modelling techniques
which we primarily used to interpolate between known data (e.g., machine learning), or make predictions
about phenomena where randomness did not play a significant role (e.g., finite volume or finite element
methods applied to simple physics problems). Most of the methods and problems considered ignored (or
greatly simplified) the stochastic nature of the underlying processes. When uncertainty was considered
explicitly, it focused primarily on error and epistemic types, for example, the inclusion of various types of
noise in Time Series Analysis, or measurement precision in Observation Theory. In these cases, the focus was
on applications that were governed by variations around a central value (as opposed to the tails of the
distribution), which are often modelled sufficiently using a Gaussian distribution.

The chapter on Continuous Distributions introduced additional asymmetric parametric distributions, such as
the Gumbel or Exponential, which are better able to represent the observations that have a small frequency in
a data set (i.e., rare events). Regardless of their flexibility, these distributions are not possible to validate for
cases where data simply does not exist, which is where concepts introduced in this chapter become useful.

Continuous parametric distributions are relatively simple models to apply, and allow one to make inferences
of values of the modelled random variable that occur infrequently, or not at all, within the available
observations (i.e., the data set) due to a key concept: the tail of the distribution. When extrapolating to values
outside a set of observations, fitting of the parametric distribution to the tail is crucial to provide a reasonable
extrapolation. Consider the following figure, which was covered earlier in this book:



What's next?

= Wednesday:

= Extreme temperature

= Friday
= Extreme precipitation

= Case of the flood caused
by a DANA In Valencia in
October 2024

Figure source: Revista Ejercitos

]
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And enjoy the journey!
Questions?

Please, leave the room through the door
in the ground floor.

%
TUDelft
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