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Welcome to... Probability is 

back!!



Today’s session – Extreme 
Value Analysis (EVA)

1. Refresher (mainly week 7) 
and motivation for EVA

2. Extremes, design conditions 
and return period

3. Block Maxima & GEV

4. POT & GPD
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Bernoulli process

Binomial distribution

Poisson distribution



1. Refresher and motivation
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Deterministic → If input is ‘a’, output will 

always be ’b’

Stochastic → If input is ‘a’, what is the 

probability of ‘b’

Recap of Q1 – Week 1



Recap of Q1 – Uncertainty weeks 

F = 10 kN

Qin QoutC(t)

δ = ? mm

δ = g(F)

Qout = g(Qin, C(t))



Recap of Q1 – Week 7

8-1-2025 7

Aleatoric

▪ intrinsic phenomenon; 
typically associated with 
variations that occur in 
nature

Epistemic

▪ lack of knowledge; often 
called model uncertainty

Error

▪ deficiency in any stage 
of modelling/simulation 
not due to lack of 
knowledge

Variables are NOT necessarily 

Gaussian-distributed!

From C.E. Stringari (2020) 

"Carbon Dioxide in Earth's Mid-Troposphere, April 2013 Monthly 
Average" by Atmospheric Infrared Sounder is licensed under CC BY 2.0.



Recap of Q1 – PDF 
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▪ Continuous random variables

▪ Distribution function: Mathematical model which relates the values of a random variable and 
their probability



Join the Vevox session

Go to vevox.app

Enter the session ID: 108-740-284

Or scan the QR code



Which probability functions have you used previously 
in MUDE?

32/47 Question slideJoin at: vevox.app ID: 108-740-284



Which probability functions have you used previously 
in MUDE?

32 Showing ResultsJoin at: vevox.app ID: 108-740-284
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Recap of Q1 – PDF 
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▪ Continuous random variables

▪ Distribution function: mathematical 
model which relates the values of a 
random variable and their probability

▪ Probability density function (PDF)

PDF of the Gaussian distribution



Recap of Q1 – From PDF to CDF
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▪ Probability density function (PDF)

▪ Cumulative distribution function (CDF)



Which probability do I obtain when evaluating the CDF 
(Cumulative Distribution Function)?

41/47 Question slideJoin at: vevox.app ID: 108-740-284

Exceedance probability, P(X>x) 0%

Non-exceedance probability, 

P(X<x)
0%

Exact probability, P(X=x) 0%



Which probability do I obtain when evaluating the CDF 
(Cumulative Distribution Function)?

41 Showing ResultsJoin at: vevox.app ID: 108-740-284

Exceedance probability, P(X>x) 12%

Non-exceedance probability, 

P(X<x)
83%

Exact probability, P(X=x) 5%

RESULTS SLIDE

12%

83%



Recap of Q1 – From PDF to CDF
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▪ Probability density function (PDF)

▪ Cumulative distribution function (CDF)

CDF of the Gaussian distribution



From PDF to CDF
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Recap of Q1 – Exceedance 
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Continuous distribution functions
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Mathematical model which relates the values of a random variable and their probability

But what do I want to model?

Observations

I want a model which is able to reproduce the probabilistic behavior in the observations

Empirical distribution function Parametric distribution: model

Empirical distribution: observations



Empirical distribution function (ECDF)
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Observations #equal or not exceeding ECDF

2.3 4 4/(9+1)

1.2 1 1/(9+1)

4.5 9 9/(9+1)

1.8 3 3/(9+1)

3.4 7 7/(9+1)

3.7 8 8/(9+1)

3.3 6 6/(9+1)

2.9 5 5/(9+1)

1.5 2 2/(9+1)

We need to assign a non-

exceedance probability to 

each observation

#observations = 9



Empirical distribution function (ECDF)
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We need to assign a non-

exceedance probability to 

each observation



Recap of Q1 – Why is the tail important?
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▪ You are designing a building against 
wind loading

▪ Which value would you use for design?

▪ We want the building to perform in 
ordinary conditions (around central 
moments)

▪ We also want the building to withstand 
the storms



Recap of Q1 – Modelling the tail of the distribution

8-1-2025 23

▪ Wednesday workshop in week 1.7 – modelling compressive strength of concrete



Focusing on the tail of the distribution: EVA
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▪ Systems and infrastructures are typically designed and assessed for extreme 
conditions.

▪ Extreme events are located in the tails of the distribution

▪ Extreme events are typically scarce: short timeseries (e.g.: 20 years) in comparison 
with the design events that the system needs to withstand (e.g.: 1,000 years event).

▪ Extreme Value Analysis (EVA) focuses on those events located at the tails of the 
distribution and provides a framework to identify and model the stochastic behavior 
of extreme events so events which have not been observed can be inferred.



2. Extreme, design conditions and return 
period
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An extreme observation is an

observation that deviates from the

average observations

What’s an extreme?
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Example: t-shirt price Extremes are located at

the tail of the distribution!



Example case: intervention in the Mediterranean coast

• It may be a coastal structure, a 
water intake, the restoration of 
a sandy beach, between 
others.

• Here: design a mound 
breakwater

• Mound breakwater must resist 
wave storms → Hs

• But which one?

28



Design requirements

Regulations and recommendations → Exceedance probability or return period

29

Country Standard TR (years) DL (years) pf,DL (-)

England BS 6349-1-1:2013 50-100* 50-100 0.05*

Japan TS Ports-2009 50-100 50 0.40-0.64

Spain ROM 0.0-01/1.0-09 113-4,975 25-50 0.01-0.2

*Not well defined

But what is return 

period?

Which conditions does my intervention need to withstand?
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Design conditions: return period

▪ The return period is a concept in guidelines and recommendations in the Engineering and 
Geosciences field to parameterize the safety level. Then, the magnitude of the design event 
is given by a return period.

Return period is defined as is the expected time between two exceedances of extreme 

events.



31

We are interested in estimating, on average, the time (e.g., year(*)) at which an event (here, the wave

height) higher than a given threshold, (e.g. design value), occurs.

We know that Pr 𝑍 > 𝑧𝑞 = 1 − 𝑞 = 𝑝

(*) the unit time reflects the interval time in which the observations are taken

design 

value

𝒛𝟎

Figure from Salas, et la (2013). Journal of Hydrologic Engineering, 19(3), 554-568.

Return Period - Derivation Mathematical definition

Every year the probability of the event 

being higher/lower than the threshold 
is always the same



Return Period - Derivation
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Let’s calculate the probability that an event

𝑧0 higher than the design value 𝑧𝑞 occurs at

time 𝑡

𝑓 𝑡 = 𝑃𝑟 𝑧0 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 = 1 − 𝑝 1 − 𝑝 … 1 − 𝑝 𝑝

𝒇 𝒕 = 𝑷𝒓 𝒛𝟎 𝒂𝒕 𝒕𝒊𝒎𝒆 𝒕 = 𝒒𝒕−𝟏𝒑

Geometric Distribution 
it models the number of trials up to the first success 
(included) 

design 

value

Every year the probability of the event 

being higher/lower than the threshold 
is always the same

𝒛𝟎

𝑻 𝒕 =
𝟏

𝒑

T(t) expectation
it will take on average 1/p trials to get a 
success

T is also defined as Return 

Period (in unit time).

“We have to make, on average, 

1/p trials in order that the event 

happens once” (Gumbel)

or wait 1/p years before the 

next occurrence



Design requirements

Regulations and recommendations → Exceedance probability or return period

Country Standard TR (years) DL (years) pf,DL (-)

England BS 6349-1-1:2013 50-100* 50-100 0.05*

Japan TS Ports-2009 50-100 50 0.40-0.64

Spain ROM 0.0-01/1.0-09 113-4,975 25-50 0.01-0.2

*Not well defined

But also Design Life and the 

probability of failure during 

the design life (pf,DL)
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How do they relate 

to each other?



Back to basics – Bernoulli process

Bernoulli process Extremes

Two possible outcomes: success or failure ✓ Each observation can be an over or below

Outcomes are mutually exclusive and 

collectively exhaustive ✓ over vs. below the design value

Constant probability of success ✓ stationarity

Independence between trials ✓ Hypothesis of EVA iid events

"Coin Toss (3635981474)" by ICMA 
Photos  is licensed under CC BY-SA 2.0.
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Extremes can be assimilated as a Bernoulli process



Back to basics – Binomial distribution

Number of exceedances (succeses) in a given number of trials follows a Binomial distribution

𝑝𝑋 𝑥 = 𝑃 𝑋 = 𝑥 𝑛, 𝑝 =
𝑛

𝑥
𝑝𝑥(1 − 𝑝)𝑛−𝑥 𝑓𝑜𝑟 𝑥 = 0, 1, … , 𝑛; 𝑝 ∈ [0,1]

𝑝𝑋 𝑥 = 𝑃 𝑋 = 𝑥 𝑛, 𝑝 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where

𝑛

𝑥
=

𝑛!

𝑥! 𝑛 − 𝑥 !

35

Extremes can be assimilated as a Bernoulli process



Design requirements

Regulations and recommendations → Exceedance probability or return period

Country Standard RT (years) DL (years) pf,DL (-)

England BS 6349-1-1:2013 50-100* 50-100 0.05*

Japan TS Ports-2009 50-100 50 0.40-0.64

Spain ROM 0.0-01/1.0-09 113-4,975 25-50 0.01-0.2

*Not well defined

But also Design Life and the 

probability of failure during 

the design life (pDL)

36

Any idea 

now?



Design requirements – Binomial distribution
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• pf,DL - pf,y - DL - TR

• Each year is a trial 

• The number of exceedances (successes) in a given number of years (trials) ~ Binomial 

• pf,DL is the probability of an excess at least once in the DL

• pf,DL = 1 – probability of no excess

• pf,DL = 1 - (1 - pf,y)
DL

Success (excess the design value) or failure (no excess)?
M

O

D

E

L

TR = 1/pf,y

𝑝𝑋 0 = 𝑃 𝑋 = 0 𝐷𝐿, pf,y =
𝐷𝐿

0
pf,y

0(1 − pf,y)
𝐷𝐿−0

𝑇𝑅 =
1

pf,y

=
1

1 − (1 − pf,DL)1/𝐷𝐿



Design requirements – Binomial distribution
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• DL = 20 years

• pf,DL =  0.20

𝑇𝑅 =
1

pf,y

=
1

1 − (1 − pf,DL)1/𝐷𝐿

𝑇𝑅 =
1

pf,y

=
1

1 − (1 − 0.2)1/20
≈ 90 𝑦𝑒𝑎𝑟𝑠

pf,y ≈ 0.011 



Intermezzo – Poisson distribution
The Binomial distribution is defined as

If n → ∞, x and p are finite and defined and p is very small, 𝜆 = 𝑛𝑝.

After some simplifications… Poisson distribution

Binomial is based on discrete events, while the Poisson is based on continuous events.

That is, in Poisson distribution n→∞ and p is very small, so you have an infinite number of

trials with infinitesimal chance of success.



Also possible with the Poisson distribution!
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Break?

Please, leave the room through the door 
in the ground floor.



General outline of EVA
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1. Select the extreme observations in the 
timeseries

2. Build a ECDF with the observations

3. Fit a parametric CDF to the ECDF (the 
distribution given by the method)

4. Check performance using GOF

5. Use the parametric CDF to infer 
extremes we have not observed yet



3. Block Maxima & Generalized Extreme 
Value (GEV) distribution
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Time series
Can I use all the 

values in the time 

series for the 

analysis?



In the given time series, which observations are 
extreme and, thus, you would include in your analysis?

29/28 Question slideJoin at: vevox.app ID: 108-740-284



In the given time series, which observations are 
extreme and, thus, you would include in your analysis?

29 Showing ResultsJoin at: vevox.app ID: 108-740-284
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We need a systematic way to sample extreme values!

Two techniques:

1. Block Maxima

2. Peak Over 
Threshold (POT)

Each sampling technique defines a method of EVA
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Sampling extremes: Block Maxima
1. Block Maxima 

(typically block=1year)

• Maximum value 
within the block

• Number of selected 
events=number of 
blocks recorded (e.g.: 
number of years)

• Easy to implement



Generalized Extreme Value Distribution

▪ We are interested in modelling the maximum of the sequence 𝑋 =  𝑋1, … , 𝑋𝑛
of iid random variables, 𝑀𝑛 = max(𝑋1, … , 𝑋𝑛), where n is the number of 
observations in a given block. 

▪ We can prove that for large n, those maxima tend to the Generalized 
Extreme Value (GEV) family of distributions, regardless the distribution 
of X.

𝑃 𝑀𝑛 ≤ 𝑥 → 𝐺(𝑥)

49



Generalized Extreme Value is defined as

With parameters location (.                  ), scale ( .      ) and shape (                  ).

Generalized Extreme Value Distribution
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Location parameter (µ)

Higher µ, right 
displacement of the 
distribution, higher values.



Generalized Extreme Value is defined as

With parameters location (.                  ), scale ( .      ) and shape (                  ).

Generalized Extreme Value Distribution
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Scale parameter (𝝈)

Higher 𝝈, wider 
distribution.



Generalized Extreme Value is defined as

With parameters location (.                  ), scale ( .      ) and shape (                  ).

Generalized Extreme Value Distribution
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Shape parameter (𝝃)

Determines the tail of the 
distribution.



Plotting the tails…

▪ Gumbel: light tail

▪ Fréchet: heavy tail

▪ Reversed Weibull: 

bounded at 𝑥 = 𝜇 −
𝜎

𝜉

Generalized Extreme Value Distribution
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Let’s apply it
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• Load: significant wave height (TR=90 
years)

• 20 years of hourly measurements → 20 
yearly maxima samples

read observations

for each year i:

obs_max[i] = max(observations in year i)

end

fit GEV(obs_max)

check fit (e.g., QQ-plot or Kolmogorov-

Smirnov test)

inverse GEV to determine the design

event

𝑇𝑅 =
1

pf,y 
→ 𝑝𝑓,𝑦 =

1

90
= 0.011



Let’s apply it
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• Load: significant wave height (TR=90 
years)

• 20 years of hourly measurements → 20 
yearly maxima samples

read observations

for each year i:

obs_max[i] = max(observations in year i)

end

fit GEV(obs_max)

check fit (e.g., QQ-plot or Kolmogorov-

Smirnov test)

inverse GEV to determine the design

event

𝑇𝑅 =
1

pf,y 
→ 𝑝𝑓,𝑦 =

1

90
= 0.011



Let’s apply it
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• Load: significant wave height (TR=90 
years)

• 20 years of hourly measurements → 20 
yearly maxima samples

read observations

for each year i:

obs_max[i] = max(observations in year i)

end

fit GEV(obs_max)

check fit (e.g., QQ-plot or Kolmogorov-

Smirnov test)

inverse GEV to determine the design

event

𝑇𝑅 =
1

pf,y 
→ 𝑝𝑓,𝑦 =

1

90
= 0.011



Common mistakes - Let’s talk about the ‘units’ 
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▪ Daily maxima of discharges Q is performed on the observations which last 
for 5 years. We have then 365x5=1,825 extremes. A GEV is fitted.

▪ We want to compute the discharge associated with a return period of 100 
years.

??



Common mistakes - Let’s talk about the ‘units’ 
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▪ Daily maxima: ‘units’ of the probabilities in the GEV distribution?



Days!

x Sort(x) Rank Rank/length + 1

3.2 2 1 1/6 = 0.17

4.5 3.2 2 2/6 = 0.33

3.8 3.8 3 3/6 = 0.5

7.5 4.5 4 4/6 = 0.67

2 7.5 5 5/6 = 0.83

Empirical CDF
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Let’s do it slowly!

>> read observations

>> x = sort observations in ascending

order

>> length = the number of observations

>> probability of not exceeding = (range

of integer values from 1 to length) /

length + 1

>> Plot x versus probability of not

exceeding

Length = 5



Common mistakes - Let’s talk about the ‘units’ 

60

▪ Daily maxima: ‘units’ of the probabilities in the GEV distribution
1

𝑑𝑎𝑦𝑠

▪ Return period: 100 years

𝑇𝑅 =
1

pf,y

→ pf,y =
1

𝑇𝑅
=

1

100 𝑦𝑒𝑎𝑟𝑠

𝑇𝑅 =
1

pf,y  
→ pf,d =

1

𝑇𝑅
=

1

100 𝑦𝑒𝑎𝑟𝑠

1 𝑦𝑒𝑎𝑟

365 𝑑𝑎𝑦𝑠
= 2.7 ∙ 10−5 1/days

1-pf,d



Common mistakes - Let’s talk about the ‘units’ 
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▪ Daily maxima: ‘units’ of the probabilities in the GEV distribution
1

𝑑𝑎𝑦𝑠

▪ Return period: 100 years

▪ Can you compute the return level of Q for 𝜇 = 50, 𝜎 = 25 and 𝜉 = −1?

𝑇𝑅 =
1

pf,y  
→ pf,d =

1

𝑇𝑅
=

1

100 𝑦𝑒𝑎𝑟𝑠

1 𝑦𝑒𝑎𝑟

365 𝑑𝑎𝑦𝑠
= 2.7 ∙ 10−5 1/days



Computing the return level
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− ln 𝐺 𝑥 = 1 + 𝜉
𝑥 − 𝜇

𝜎

−
1
𝜉

− ln 𝐺 𝑥
−𝜉

− 1 = 𝜉
𝑥 − 𝜇

𝜎

𝑥 =
𝜎

𝜉
− ln 𝐺 𝑥

−𝜉
− 1 + 𝜇

𝑥 =
25

−1
− ln 1 − 2.7 ∙ 10−5 1 − 1 + 50 ≈ 75𝑚3/𝑠

𝜇 = 50, 𝜎 = 25 and 𝜉 = −1
pf,d = 2.7 ∙ 10−5 1/days



4. Peak Over Threshold (POT) & 
Generalized Pareto distribution (GPD)
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Sampling extremes: Peak Over Threshold (POT)
2. Peak Over Threshold 

(POT)

• Usually, higher number 
of extremes identified

• Additional parameters:

• Threshold (th)

• Declustering time (dl)
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Choosing POT parameters

Basic assumption of EVA: extremes are iid th and dl should be chosen so the identified extreme

events are independent.

Extremes cluster in 
time!

If dl is big enough, we 
ensure that extremes 
do not belong to the 
same storm.

dl & th, physical 
phenomena (local 
conditions)



POT and Poisson
• Each hour is a trial (n → ∞)

• Over or below the threshold?

•  pabove is very small (tail of 
the distribution)

• Block = 1 year

• Number of excesses in each 
block over the threshold ~ 
Poisson

Almost all the techniques to formally select the threshold and declustering time for

POT are based on the assumption that the sampled extremes should follow a Poisson

distribution.



Samples: Poisson

If the number of excesses per year follows

a Poisson distribution
Sampled maxima are independent

• Compute the number of 
excesses per year

• Empirical pmf and cdf

• Fit Poisson distribution using 
Moments

• Check the fit

• Graphically

• Chi-squared test



Generalized Pareto Distribution

▪ The maximum of the sequence 𝑋 =  𝑋1, … , 𝑋𝑛 of iid random variables, 𝑀𝑛 =
max(𝑋1, … , 𝑋𝑛), where n is the number of observations in a given block, 
follows the Generalized Extreme Value (GEV) family of distributions, 
regardless the distribution of X for large n.

𝑃 𝑀𝑛 ≤ 𝑥 → 𝐺(𝑥)

▪ If that is true, the distribution of the excesses can be approximated by a 
Generalized Pareto distribution.

𝐹𝑡ℎ = 𝑃 𝑋 − 𝑡ℎ ≤ 𝑥 𝑋 > 𝑡ℎ → 𝐻(𝑦)

▪ where the excesses are defined as Y=X−th for X>th

68



Generalized Pareto distribution of the excesses is defined as

These are conditional probabilities to X>th. As function of the random 
variable X and the threshold th

Generalized Pareto Distribution
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With parameters threshold (th>0), pareto’s scale (𝜎𝑡ℎ > 0) and shape (                    ).

Relationship with GEV’s parameters

▪ Shape parameter is the same

▪ 𝜎𝑡ℎ defined based on GEV’s parameters as

Generalized Pareto Distribution
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With parameters threshold (th>0), pareto’s scale (𝜎𝑡ℎ > 0) and shape (                    ).

Generalized Pareto Distribution
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Threshold (th)

Acts like a location 
parameter.



With parameters threshold (th>0), pareto’s scale (𝜎𝑡ℎ > 0) and shape (                    ).

Generalized Pareto Distribution
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Scale parameter (𝝈𝒕𝒉)

Higher 𝝈𝒕𝒉, wider 
distribution.



With parameters threshold (th>0), pareto’s scale (𝜎𝑡ℎ > 0) and shape (                    ).

Generalized Pareto Distribution
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Shape parameter (𝝃)

▪ 𝝃<0: upper bound

▪ 𝝃>0: heavy tail

▪ 𝝃=0 & th = 0: Exponential

▪ 𝝃=-1: Uniform



Let’s see how to put it into practice

▪ Extremes of discharges Q are sampled with POT using th =50 m3/s  and dl = 
24h on the observations which last for 5 years. We have sampled 2,000 
extremes. A GPD is fitted to the excesses with 𝜎𝑡ℎ = 25 and 𝜉 = 0.1.

▪ We want to compute the discharge associated with a return period of 100 
years.
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where the excesses are defined as Y=X−th for X>th.



Let’s talk again about ‘units’

▪ POT using th = 50 m3/s 
and dl = 24h

▪ N = 5 years

▪ nth = 1,000 extremes

▪ GPD is fitted with 𝜎𝑡ℎ
= 25 and 𝜉 = 0.1

▪ TR = 100 years

75

𝑇𝑅 =
1

pf,y
=

1

100
= 0.1 1/days

𝑇𝑅 =
1

pf,y  
→ pf,d =

1

𝑇𝑅
=

1

100 𝑦𝑒𝑎𝑟𝑠

1 𝑦𝑒𝑎𝑟

200 𝑒𝑣𝑒𝑛𝑡𝑠
= 5 10-5 1/events

→'Units’ of the GPD? 

‘Event-wise’, irregular number of events per year

We assume that the number of extremes per 

year is Poisson-distributed.

We use the average number of excesses each 

year: 𝜆 =
1,000

5
= 200



Remember the threshold!
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Since 𝜉 = 0.1(≠ 0), 𝐻 𝑦 = 1 − 1 +
𝜉𝑦

𝜎𝑡ℎ

−1/𝜉

1 +
𝜉𝑦

𝜎𝑡ℎ

−1/𝜉

= 1 − 𝐻 𝑦

1 +
𝜉𝑦

𝜎𝑡ℎ
 = [1 − 𝐻 𝑦 ] −𝜉

𝑦 =
𝜎𝑡ℎ [1 −𝐻 𝑦 ] −𝜉−1

𝜉
=

 =
25 [1 − (1 − 0.00005)] −0.1−1

0.1
= 423

𝑚3

𝑠

Design discharge: y + th = 473
𝑚3

𝑠

▪ POT using th = 50 m3/s 
and dl = 24h

▪ N = 5 years

▪ nth = 1,000 extremes

▪ GPD is fitted with 𝜎𝑡ℎ =
25 and 𝜉 = 0.1

▪ TR = 100 years

pf,d =
1

𝑇𝑅
=

1

100 𝑦𝑒𝑎𝑟𝑠

1 𝑦𝑒𝑎𝑟

200 𝑒𝑣𝑒𝑛𝑡𝑠
= 5 10-5 1/events



Practicalities: what’s next?



What’s next?
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▪ This lecture: basic theory 
and how to apply it.

▪ Much more theory and 
demonstrations in the 
textbook!

▪ In 7.2, asymptotic model 
and domains of attraction

▪ In 7.3, RT&DL based on 
Poisson distribution, 
theory behind application 
of the GPD

▪ In 7.4, extra material: 
Bernoulli&Binomial and 
videos



What’s next?
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▪ Wednesday:

▪ Extreme temperature

▪ Friday

▪ Extreme precipitation

▪ Case of the flood caused 
by a DANA in Valencia in 
October 2024

Figure source: Revista Ejercitos



And enjoy the journey!

Questions?

Please, leave the room through the door 
in the ground floor.
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