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A long, long, long time ago (2 years)

Two teddy bears discovering a newmetamaterialA Finite Element model knitted out of wool
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Fairly long ago (2 days)

Here is a delightful image of two teddy bears hard at
work constructing a newmetamaterial in a whimsical lab!
Their tiny lab coats and safety goggles add an adorable
touch while blending humor with a scientific theme.

Here is the creative depiction of a FEMmesh
knitted out of wool! It combines the structural

precision of FEMwith the softness and humor of knitted
material, making it an engaging and fun way to teach
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Nowadays machine learning can do a lot more
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It cannot come up with new ideas, but it can help you do it

[Ge et al (2019), arXiv:1905.08222]

Generating new, more sustainable concrete mixtures:
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It cannot come up with new ideas, but it can help you do it

Detecting plastic in deep sea with autonomous underwater vehicles:
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It cannot come up with new ideas, but it can help you do it

[Xue et al (2021), IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14]

Detecting plastic in deep sea with autonomous underwater vehicles:
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It cannot come up with new ideas, but it can help you do it

[Bodnar et al (2024), arXiv:2405.13063]

A 1.3 billion parameter foundation model for the Earth atmosphere and ocean waves:
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A few examples closer to home

[Martínez Colán (2022)]

Inverse identification of bridge health through Bayesian machine learning:
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A few examples closer to home

[Rithu Maria (2024)]

Classifier model for predicting need for reinforcement against earthquakes in Groningen:

9/43



A few examples closer to home

[Mariana Fuente (2024)]

Neural network-based mechanical analogues for soil-structure interaction:
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A few examples closer to home

[Ron Navarro (2024)]

Bayesian machine learning for reliability analysis of geotechnical engineering problems:
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Some definitions and terminology
Narrow versus General AI:

■ Narrow AI can only perform one specific task⇐ML techniques live here
■ General AI can perform a multitude of tasks and program itself⇐ just a dream (for now)

Supervised Learning: Tasks with known target outcomes, requires labeled data:
■ Regression: Map input features to noisy observations of continuous targets⇐ this course
■ Classification: Map input features to discrete class labels

Unsupervised Learning: Explain patterns in unlabeled data with latent (hidden) variables:
■ Clustering: Split data into groups explained by discrete latents
■ Dimensionality reduction: Explain the data with a manifold described by continuous latents

Reinforcement Learning: Learn a task through reward/punishment mechanisms:
■ Agent(s) interacting with an environment, evolving interaction policy
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Finding patterns and making good use of them

[Ramesh et al (2022), arXiv:2204.06125]

The core goal of ML is not fitting data, but finding useful representations and exploiting them
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Week 2.6 — Theory
You can find all the material in the book, as always:

■ Pages for each important concept, starting from scratch
■ It is beneficial to go through them in order

Interactive plots:
■ You will play with some interactive plots today
■ Keep going in the book, good way to build ML intuition

Videos:
■ Each page comes with a short video, highly recommended to watch
■ In total about 40 minutes of videos for regression modeling

Quiz questions:
■ In each page with hidden answer blocks
■ At the end of the book section on a dedicated page — these are exam-like questions
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Week 2.6 — PA andWS
Programming assignment:

■ Split a dataset into training/validation/test blocks
■ Crucial operation when training ML models!

Wednesday workshop:
■ Build your first neural networks with scikit-learn
■ Experiment with data normalization, overfitting, underfitting and model selection
■ Revisit the road deformation project fromWeek 1.3, now with neural nets

Code from both assignments will be very helpful for Friday
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Week 2.6 — Friday project
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Detecting cracks in bridges with neural networks:
■ Beams with a crack somewhere along the span
■ We do not know the crack location but we do know how the beam deforms
■ We train a net with a dataset of 800 beams and predict 200 unseen ones

A complete ML regression workflow:
■ Pre-process the data and get it ready for training
■ Experiment with feature selection, starting with one sensor at midspan
■ Perform a well-structured model selection procedure to pick the best architecture
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Objectives
Contents:

■ Decision theory for regression, k-Nearest Neighbors estimator
■ Linear regression with nonlinear basis functions
■ Introduction to neural networks for regression

By the end of the week, you will be able to:
■ Compare different regression modeling approaches
■ Construct parsimonious regression models
■ Critically assess model performance

Brace yourself for some statistics:
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Quick statistics recap
Continuous random variables represented by probability densities:

■ Joint, marginal and conditional densities
p(x, y) p(x) p(y) p(x|y) p(y|x)

■ For two independent variables x and y it holds
p(x, y) = p(x)p(y)

Some useful integrals
■ Expectation of a function of a random variable

E[f(x)] =
∫

f(x)p(x) dx

■ Monte Carlo approximation of the expectation, with N samples xi from p(x):

E[f(x)] ≈ 1

N

N∑
i

f(xi)

■ Variance of a function of a random variable

var[f(x)] = E
[
(f(x)− E[f(x)])2

]
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Regression problems
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The problem we would like to solve:
■ Given: Some complex process p (x, t), usually highly nonlinear

■ Goal: Construct a model y(x) that is as close as possible to t
■ In practice: We do not know p (x, t), but only have N observations of it
■ How to measure this ”closeness”? The squared loss function is a popular choice:

L (t, y(x)) = (y(x)− t)2

■ Here it is natural to go for the expectation:

E [L] =
∫ ∫

(y(x)− t)2 p (x, t) dx dt

■ Solving for the regression function y(x) gives:

y(x) =
∫

tp (t|x) dt = Et [t|x]

■ We can see this as an ”ideal model” h(x) = Et [t|x], but it requires full knowledge of p(x, t) (i.e. infinite data)
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Reaching a model y(x)with local approximations

Let us start with a very simple k-Nearest Neighbors (kNN) model:

■ We look at a neighborhood Nk around x0 until we find k points⇒ approximate conditioning E[t|x]
■ We then average these points to obtain y(x0)⇒ approximate expectation E[t|x]

Nowwe just need to pick k by minimizing the loss:
■ Since we only have N data points we minimize a Monte Carlo approximation:∫ ∫

(y(x)− t)2 p (x, t) dx dt ≈ 1

N

N∑
i

(y(xi)− ti)
2
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Now let us try this out
Go to bit.ly/engmechml or scan the QR code:

■ Look at the first interactive plot
■ Change the value of k until you are satisfied with the model
■ Change the value of k until the training loss is as small as possible:

E [L] ≈ 1

N

N∑
i

(y(xi, k)− ti)
2
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Overfitting and underfitting
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Ground truth

This is the model we get if we are just trying to minimize the training loss:
■ Model fits the noise in the dataset and cannot generalize
■ The error is exactly zero, but this is not a good model

■ Too much freedom? What if we increase k?
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Model selection
Clearly, choosing k is tricky:

■ Too low: we fit the noise in the data⇒ overfitting!
■ Too high: we oversmooth and lose detail⇒ underfitting!
■ The training set cannot be trusted to give us k, it will always lead to k = 1

The solution is to introduce a validation dataset:
■ A new dataset that cannot be used for training
■ We can then use it to find the hyperparameter k:

k = arg min
k

1

Nval

Nval∑
i

(
y(xi, k)− ti

)2
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Model selection
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The bias-variance tradeoff:
■ Overly flexible models have low bias and high variance
■ Overly rigid models have high bias and low variance
■ Wemay accept some bias in exchange for a lower variance... but not too much
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Let us do it one last time
Go to bit.ly/engmechml or scan the QR code:

■ Look at the third interactive plot
■ Change the value of k until the validation loss is as low as possible
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The bias-variance tradeoff
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Why do we say flexible models have high variance? A closer look:
■ Same example as before, but now 1000 different datasets of N = 50 each
■ Howmuch does the choice of dataset affect the final model?

L(x) = (ED [y(x,D)]− h(x))2︸ ︷︷ ︸
bias2

+ED
[
(y(x,D)− ED [y(x,D)])2

]
︸ ︷︷ ︸

variance

+

∫
(h (x)− t)2 p(t|x) dt︸ ︷︷ ︸

irreducible noise
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■ Same example as before, but now 1000 different datasets of N = 50 each
■ Howmuch does the choice of dataset affect the final model?

L(x) = (ED [y(x,D)]− h(x))2︸ ︷︷ ︸
bias2

+ED
[
(y(x,D)− ED [y(x,D)])2

]
︸ ︷︷ ︸

variance

+

∫
(h (x)− t)2 p(t|x) dt︸ ︷︷ ︸

irreducible noise
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Reaching a model y(x)with a global approximation

Observation model:
■ We adopt a parametric model y(x,w) and assume some additive Gaussian noise:

t = y(x,w) + ϵ with ϵ ∼ N
(
0, β−1

)

■ Under the squared loss we have seen before, the regression function is simply:

Et [t | x] =
∫

tp (t | x) dt = y(x,w)

■ The learning problem then boils down to fitting a Gaussian distribution

The approximations for this flavor of models are now:
■ Noise is Gaussian
■ Response is unimodal (because the Gaussian has only one peak)
■ The function y(x,w)might not be infinitely flexible (bias ̸= 0)
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Giving y(x) some shape — linear basis function models

Simple linear regression, assuming D input features in x:
■ Parametric model, linear in its arguments:

y(x,w) = w0 + w1x1 + · · ·+ wDxD

Here we make themmore flexible:
■ General nonlinear functions of x as regressors:

y(x,w) =
M∑
j

wjϕj(x) = wTϕ(x)

■ A bias term ϕ0 = 1 is usually included in ϕ
■ We are now unshackled from the original dimensionality D
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Maximum Likelihood Estimation
Computing the likelihood of our data:

■ The probability density of a given value t is:

p (t |w) = N
(
t |y(x,w), β−1

)
■ Given a dataset D with observations X = {x1, · · · , xN} / t = [t1, · · · , tN],

■ The likelihood of drawing our whole dataset from this Gaussian is therefore:

p (D |w) =
N∏

n=1

N
(

tn |wTϕ(xn), β
−1

)
■ Applying the natural logarithm to both sides, we get:

ln p (D |w) =
N∑

n=1

lnN
(

tn |wTϕ(xn), β
−1

)
=

N
2

lnβ −
N
2

ln(2π)− β

{
1

2

N∑
n=1

(
tn − wTϕ(xn)

)2
}

■ Maximizing the likelihood is therefore equivalent to minimizing the error in red
■ This is where the usual loss function for ML regression comes from
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Maximum Likelihood Estimation
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How does this look like? An example:
■ Dataset with N = 100 observations, M = 6 basis functions (polynomials or Gaussians)
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Overfitting and underfitting MLE models
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Also here, flexibility is not always a good thing:
■ Dataset with N = 10 observations, model with complete order M polynomials
■ Again a tradeoff between bias and variance
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Regularized MLE models
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L2 regularization, also known as Ridge Regression or Weight Decay:
■ Model complexity is a bit hidden here. We can make it explicit by doing:

wML = arg min
w

{
1

2

N∑
n=1

(
tn − wTϕ(xn)

)2
+

λ

2
wTw

}
⇒ wML =

(
ΦTΦ+ λI

)−1
ΦTt
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Stochastic Gradient Descent
For now we have trained with the complete dataset at once:

■ The error function contains all N data points:

ED =
1

2

N∑
n=1

(
tn − wTϕ(xn)

)2

Situations when it is interesting (or necessary) to deviate from this:
■ N is too large and computing

(
ΦTΦ

)−1 becomes prohibitive
■ The model is nonlinear (in w) and wML does not have a closed-form solution
■ The dataset is arriving sequentially (e.g. in real time from a sensor)
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Stochastic Gradient Descent
Instead of solving directly for wML, we can use Gradient Descent:

■ Pick a (random) subset B of the dataset with NB observations

■ Update w with gradients coming from B and with a fixed learning rate η:

w(τ+1) = w(τ) − η∇EB with ∇EB = −
NB∑
n=1

(
tn − w(τ)Tϕ(xn)

)
ϕ(xn)

T

■ Every time the complete dataset has been seen, we say an epoch has passed

Variations:
■ NB = 1: Online stochastic gradient descent
■ 1 < NB < N: Minibatch SGD (most popular)
■ NB = N: Full batch gradient descent
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Stochastic Gradient Descent
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An example:
■ Same example as before, with N = 100 and M = 6 polynomial basis functions
■ We fix the learning rate η = 0.001 and minibatch size NB = 10
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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Using SGD progress to spot signs of overfitting:
■ Tracking the error on a validation dataset after every epoch
■ This motivates the early stopping strategy popular in the deep learning community
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Stochastic Gradient Descent

0 2 4 6
−2

−1

0

1

2

x [-]

t[
-]

y(x) (20 epochs)

Ground truth

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

Epoch [-]

E
D
/N

or
E

v
a
l/
N

v
a
l

[-
]

Training error

Validation error

Using SGD progress to spot signs of overfitting:
■ Tracking the error on a validation dataset after every epoch
■ This motivates the early stopping strategy popular in the deep learning community

37/43



Stochastic Gradient Descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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Adaptive basis functions

x

ϕ1

··
·

ϕM

y

ϕ1(x)

ϕM(x)

w1

wM

y = ϕ1(x)w1 + ϕ2(x)w2 + · · ·+ ϕM(x)wM

Up until now, the basis functions have been fixed a priori:
■ Polynomials: number of terms M, polynomial degrees of each term
■ Gaussians: bandwidth s, basis function centers µj
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Adaptive basis functions

x
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input layer

latent (hidden) layer

output layer

For now, only half of the model is trainable:
■ Input to hidden encoding (ϕ1 · · ·ϕM) fixed, hidden to output decoding (w) trained
■ What if we could also train the first half?
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Artificial Neural Networks
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Replacing basis functions by several layers of nonlinear transformations:
■ Neural Network: layers of neurons linked by weighted connections
■ Values at the red layer can be seen as coming from new, learned basis functions ϕ̄(x)
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Neural Networks – Activation functions
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For a given neuron, forward propagation happens in two steps:
■ A linear combination of values from the previous layer:

alj =
D∑
i

w(l)
ji z(l−1)

i + w(l)
j0

■ A nonlinear transformation with an activation function:

zlj = h
(
alj

)
Choosing the activation function:

■ Application dependent
■ Can be seen as a hyperparameter
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Neural Networks – Example
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Same example as before, but now with a neural network:
■ Full batch Adam SGD (variable learning rate)
■ Two hidden layers, 10 neurons each, ReLU activation
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Recap

You should now be able to:
■ Understand and compare different approaches for regression modeling
■ Construct parsimonious regression models for general applications
■ Critically assess model performance from a probabilistic standpoint

Main takeaways:
■ Model flexibility is not always beneficial, overfitting can be a major issue
■ Selecting good models always boils down to balancing bias and variance
■ Simply fitting data is not learning. ML is all about finding hidden patterns in data
■ Neural Networks are not magic, can be seen as adaptive versions of simpler models
■ Fancier deep learning models share this same foundation but add extra heuristics
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