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A long, long, long time ago (2 years)

A Finite Element model knitted out of wool Two teddy bears discovering a new metamaterial
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Fairly long ago (2 days)

Here is the creative depiction of a FEM mesh Here is a delightful image of two teddy bears hard at
knitted out of wool! It combines the structural work constructing a new metamaterial in a whimsical lab!
precision of FEM with the softness and humor of knitted Their tiny lab coats and safety goggles add an adorable
material, making it an engaging and fun way to teach touch while blending humor with a scientific theme.
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Nowadays machine learning can do a lot more

= LN

2.1. Strong form of the 1D Poisson

‘The strong from of the problem is a Partial Differential Equation (PDE), or a set of PDES, describing the physics
of the phenomena at hand, supplemented with appropriate boundary and initial conditions. Solving the strong
form of the problem leads to the exact solution of the continuous system. However, for many engineering
problems, it is not possible to obtain the exact solution, and numerical methods need to be employed to find an
approximate solution. The finite is one approach to find appr thatis
applicable to a wide range of different problems. In this chapter we willfocus on problems for which the strong

‘The story told below and up to the discrete form section is also presented in this video:
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1D Poisson equation

At this point, let's take as an example the one dimensional Poisson equation to ilustrate at first the so-called
strong form of the problem:

(v ) < ) e

where v(z) is a material property, u(z) the solution and f(z) a source, al of which can depend on the
coordinate . To simplify notation we will omit the &-dependence and write v,  and £ in what follows.
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Nowadays machine learning can do a lot more
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What is this equation?

This equation is a one-dimensional diffusion equation with a spatially varying diffusion coefficient
v(z), often encountered in physics and engineering to describe processes like heat conduction,
mass transport, or flow in porous media.
Components:
1. v(z):
« A spatially dependent coefficient, representing the diffusivity or conductivity of the
medium.
2. u(z):
« The variable of interest, such as temperature, concentration, or velocity field.
3. f(z):
= Asource term, representing any external inputs or sinks in the system.

4. -2 (V(l‘) MB?):

= Represents the flux due to diffusion and the spatial variation of diffusivity.
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Nowadays machine learning can do a lot more
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,% (.,(z) du(z)

What is this equation?

This equation is a one-dimensional diffusion equation with a spatially varying diffusion coefficient
v(z), often encountered in physics and engineering to describe processes like heat conduction,
mass transport, or flow in porous media.
Components:
1. v(z):
« A spatially dependent coefficient, representing the diffusivity or conductivity of the

medium.
2. u(z):
« The variable of interest, such as temperature, concentration, or velocity field.
3. f(z):
= Asource term, representing any external inputs or sinks in the system.

a -2 (V(l‘) ﬂﬂ)

= Represents the flux due to diffusion and the spatial variation of diffusivity.
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This form is particularly useful when the
material properties vary with position,
requiring a spatially dependent v/(z).

Canyou write me a simple
python code to solve this
equation with FEM in 107

em 1d Diffusion
# Elenent stiffness matrix (2x2)

ke = (au(x[n1]) + nu(x[n2])) / 2 / h * np.array(Ll1, -11,
-1, 1)

Elenent load vector (2xi
=h/2 % yay([wxlnm F(xn2D)])

# Assenble into the global systen
K[ntnzs1, nienze1] 4= k
Flntinz f

Apply Dlrichlet boundary conditlons (u(e) = 0, u(L) = 8)
nodes = [0, n_nodes - 1] # Boundary nodes

for be_node in be_nodes:

a0
¥
Belowis a simple Python code to solve the be
given 1D diffusion equation using the
Finite Element Method (FEM). The
example assumes Dirichlet boundary
console

conditions for simplicity.
8 Ru
< Fem 1d Diffusion

Answer in chat instead >
This code solves the equation

—£ (W) &) = f(a) using a simple
FEM approach in 1D. The solution is
plotted at the end. You can modify ()
and £(x) to represent more complex
problems. Let me know if you need

explanations or enhancements!

» e 6P

Message ChatGPT

08®

K[bc_node, 1] = ©
K[bc_node, be_node] =
Flbc node]

1D FEM Solution of Diffusion Equation

—e— FEM solution

0.04
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It cannot come up with new ideas, but it can help you do it

Generating new, more sustainable concrete mixtures:
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[Ge et al (2019), arXiv:1905.08222]
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It cannot come up with new ideas, but it can help you do it

Detecting plastic in deep sea with autonomous underwater vehicles:
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It cannot come up with new ideas, but it can help you do it

Detecting plastic in deep sea with autonomous underwater vehicles:

e
TUDelft [Xue et al (2021), IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14]
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It cannot come up with new ideas, but it can help you do it

A 1.3 billion parameter foundation model for the Earth atmosphere and ocean waves:
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[Bodnar et al (2024), arXiv:2405.13063]

TUDelft

7/43



It cannot come up with new ideas, but it can help you do it

A 1.3 billion parameter foundation model for the Earth atmosphere and ocean waves:
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A few examples closer to home

Inverse identification of bridge health through Bayesian machine learning:

A
SLalay &

o [GPa] e [GPa] Ect [GPa] 8 mm] 8 [mm)
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A few examples closer to home

Classifier model for predicting need for reinforcement against earthquakes in Groningen:
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A few examples closer to home

Neural network-based mechanical analogues for soil-structure interaction:
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A few examples closer to home

Bayesian machine learning for reliability analysis of geotechnical engineering problems:
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[Ron Navarro (2024)]
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Some definitions and terminology

Narrow versus General Al
= Narrow Al can only perform one specific task < ML techniques live here
= General Al can perform a multitude of tasks and program itself < just a dream (for now)

i3
TUDelft

12/43



Some definitions and terminology

Narrow versus General Al
= Narrow Al can only perform one specific task < ML techniques live here
= General Al can perform a multitude of tasks and program itself < just a dream (for now)

Supervised Learning: Tasks with known target outcomes, requires labeled data:
= Regression: Map input features to noisy observations of continuous targets < this course
= Classification: Map input features to discrete class labels

i3
TUDelft

12/43



Some definitions and terminology

Narrow versus General Al
= Narrow Al can only perform one specific task < ML techniques live here
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Some definitions and terminology

Narrow versus General Al
= Narrow Al can only perform one specific task < ML techniques live here
= General Al can perform a multitude of tasks and program itself < just a dream (for now)

Supervised Learning: Tasks with known target outcomes, requires labeled data:
= Regression: Map input features to noisy observations of continuous targets < this course
= Classification: Map input features to discrete class labels

Unsupervised Learning: Explain patterns in unlabeled data with latent (hidden) variables:

= Clustering: Split data into groups explained by discrete latents
= Dimensionality reduction: Explain the data with a manifold described by continuous latents

Reinforcement Learning: Learn a task through reward/punishment mechanisms:
= Agent(s) interacting with an environment, evolving interaction policy
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Finding patterns and making good use of them

The core goal of ML is not fitting data, but finding useful representations and exploiting them

_ CLIP objective img
encoder
“a corgi
playing a

flame _
throwing , (7 o0
trumpet” 6(\5(5(50 3 S
8-»8-»
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O O
prior decoder
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Week 2.6 — Theory

You can find all the material in the book, as always:

= Pages for each important concept, starting from scratch
= [t is beneficial to go through them in order

Interactive plots:
= You will play with some interactive plots today
= Keep going in the book, good way to build ML intuition

Videos:
= Each page comes with a short video, highly recommended to watch
= In total about 40 minutes of videos for regression modeling

Quiz questions:
= In each page with hidden answer blocks
= At the end of the book section on a dedicated page — these are exam-like questions

i3
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Week 2.6 — PA and WS

Programming assignment:
= Split a dataset into training/validation/test blocks
= Crucial operation when training ML models!

Wednesday workshop:
= Build your first neural networks with scikit-learn
= Experiment with data normalization, overfitting, underfitting and model selection
= Revisit the road deformation project from Week 1.3, now with neural nets

Code from both assignments will be very helpful for Friday

i3
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Week 2.6 — Friday project

Detecting cracks in bridges with neural networks:
= Beams with a crack somewhere along the span
= We do not know the crack location but we do know how the beam deforms
= We train a net with a dataset of 800 beams and predict 200 unseen ones

A complete ML regression workflow:
= Pre-process the data and get it ready for training
= Experiment with feature selection, starting with one sensor at midspan
= Perform a well-structured model selection procedure to pick the best architecture

i3
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Objectives

Contents:
= Decision theory for regression, k-Nearest Neighbors estimator
= Linear regression with nonlinear basis functions
= Introduction to neural networks for regression

By the end of the week, you will be able to:
= Compare different regression modeling approaches
= Construct parsimonious regression models
= Critically assess model performance

P33 SEYIN :SUOKRST

John J. Hopfield Geoffrey E. Hinton

“for foundational discoveries and inventions
that enable machine learning
with artificial neural networks”

THE ROYAL SWEDISH ACADEMY OF SCIENCES
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Objectives

Contents:

= Decision theory for regression, k-Nearest Neighbors estimator

= Linear regression with nonlinear basis functions
= Introduction to neural networks for regression

By the end of the week, you will be able to:
= Compare different regression modeling approaches
= Construct parsimonious regression models
= Critically assess model performance

Brace yourself for some statistics:

i3
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Quick statistics recap

Continuous random variables represented by probability densities:
= Joint, marginal and conditional densities

p(zy) p(@) p(y) p(aly) p(ylz)
= For two independent variables z and y it holds

p(z,y) = p(z)p(y)
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Quick statistics recap

Continuous random variables represented by probability densities:
= Joint, marginal and conditional densities

p(zy) p(@) p(y) p(aly) p(ylz)
= For two independent variables z and y it holds

p(z,y) = p(z)p(y)

Some useful integrals
= Expectation of a function of a random variable

E[f(2)] = / f@)p(z) dz

= Monte Carlo approximation of the expectation, with N samples z; from p(z):

1 N
Ef)] ~ 5 D)

= Variance of a function of a random variable

var[f(z)] = E [(f(2) - E[f=)))?]
'FUDeIft
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Regression problems

The problem we would like to solve:
= Given: Some complex process p (x, t), usually highly nonlinear
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Regression problems

The problem we would like to solve:
= Given: Some complex process p (x, t), usually highly nonlinear
= Goal: Construct a model y(x) that is as close as possible to ¢
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Regression problems

The problem we would like to solve:
= Given: Some complex process p (x, t), usually highly nonlinear
= Goal: Construct a model y(x) that is as close as possible to ¢
= In practice: We do not know p (x, t), but only have N observations of it
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Regression problems

The problem we would like to solve:
= Given: Some complex process p (x, t), usually highly nonlinear
= Goal: Construct a model y(x) that is as close as possible to ¢
= In practice: We do not know p (x, t), but only have N observations of it
= How to measure this "closeness”? The squared loss function is a popular choice:

L(t,y(x)) = (y(x) — 1)°

ty

to

i3
TUDelft

19/43



Regression problems

The problem we would like to solve:
= Given: Some complex process p (x, t), usually highly nonlinear
= Goal: Construct a model y(x) that is as close as possible to ¢
= In practice: We do not know p (x, t), but only have N observations of it

= How to measure this "closeness”? The squared loss function is a popular choice:

L(t,y(x)) = (y(x) — 1)°

= Here it is natural to go for the expectation:

E[L] = // x) — 2 p(x, £) dxdt
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Regression problems

The problem we would like to solve:
= Given: Some complex process p (x, t), usually highly nonlinear
= Goal: Construct a model y(x) that is as close as possible to ¢
= In practice: We do not know p (x, t), but only have N observations of it

= How to measure this "closeness”? The squared loss function is a popular choice:

L(t,y(x)) = (y(x) — 1)°

= Here it is natural to go for the expectation:

E[L] = // x) — 2 p(x, £) dxdt

= Solving for the regression function y(x) gives:

y(x) = / tp (1) dt = Eq [t]x]
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Regression problems

The problem we would like to solve:
= Given: Some complex process p (x, t), usually highly nonlinear

= Goal: Construct a model y(x) that is as close as possible to ¢

p (t|zo)

y(x)

E¢ [t]xo] 7‘

—
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Regression problems

The problem we would like to solve:
= Given: Some complex process p (x, t), usually highly nonlinear

= Goal: Construct a model y(x) that is as close as possible to ¢

p (t|zo)

y(x)

E¢ [t]xo] 7‘

—

Zo
x[-]
= We can see this as an "ideal model” h(z) = E, [t|x], but it requires full knowledge of p(x, ¢) (i.e. infinite data)
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Reaching a model y(z) with local approximations

Let us start with a very simple 4-Nearest Neighbors (kNN) model:
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Reaching a model y(z) with local approximations

Let us start with a very simple 4-Nearest Neighbors (kNN) model:
= We look at a neighborhood N around z; until we find & points = approximate conditioning E[¢|z]

Zo x Zo x Zo x
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Reaching a model y(z) with local approximations

Let us start with a very simple 4-Nearest Neighbors (kNN) model:
= We look at a neighborhood N around z; until we find & points = approximate conditioning E[¢|z]

= We then average these points to obtain y(zy) = approximate expectation [E[t|z]

k=1 k=2 k=4
t t t
X y(wo0) X
—y(z0) 5 — y y(z0)
I X
X X X 1

X X X X X X — )

X x X X x X X x X y(ao) k Z h

X X X ;€ N},
X0 T xo x Zo x
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Reaching a model y(z) with local approximations

Let us start with a very simple 4-Nearest Neighbors (kNN) model:
= We look at a neighborhood N}, around =z, until we find & points = approximate conditioning E[¢|]

= We then average these points to obtain y(zy) = approximate expectation [E[t|z]

k=1 k=2 k=4
t t t
X y(r(]) X X
—y(x0) 8 y(zo)
X X I X
X X X 1
X X X X X X I t;
X x X X x X X x X y(ao) k Z
X X X ;€ N},
X0 T xo x Zo x

Now we just need to pick £ by minimizing the loss:
= Since we only have N data points we minimize a Monte Carlo approximation:

N

// x) — )2 p(x, §) dxdt ~ %Z(y(xi)—ti)Q
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Now let us try this out

Go to bit.ly/engmechml or scan the QR code:
= Look at the first interactive plot
= Change the value of k until you are satisfied with the model
= Change the value of k£ until the training loss is as small as possible:

%
TUDelft
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Overfitting and underfitting

This is the model we get if we are just trying to minimize the training loss:

= Model fits the noise in the dataset and cannot generalize
= The error is exactly zero, but this is not a good model

= ‘ -
2r ]

1h ]

=z of :
i |
F—y@ k=D

—2 |- —— Ground truth N

| ! ! ! | ! ! ! | ! ! ! | -

0 2 4 6
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Overfitting and underfitting

This is the model we get if we are just trying to minimize the training loss:
= Model fits the noise in the dataset and cannot generalize
= The error is exactly zero, but this is not a good model
= Too much freedom? What if we increase &?

F i F ~ i
gl ] . o x ]
5 1 increasing k& F - .
1r ] Ll - X ]
M X

H 1 (a bit too much) L R NN S
- r ] - I x XX X
= 0 ] = 0 x « A
L i - x X X, x % i
. 4 . X X X X X 4
-1r b —1r x 5k
. 4 . X 4
F— y(z) (k=1) 1 P — y(z) (k = 100) X X XX x 1
—2 |- —— Ground truth N —2|- —— Ground truth e N
b | ! ! ! | ! ! ! | ! ! ! | | b | ! ! ! | ! ! ! | ! ! ! | |

0 2 4 [§ 0 2 4 [§
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Model selection

Clearly, choosing k is tricky:
= Too low: we fit the noise in the data = overfitting!
= Too high: we oversmooth and lose detail = underfitting!
= The training set cannot be trusted to give us k, it will alwaysleadto k=1
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Model selection

Clearly, choosing k is tricky:
= Too low: we fit the noise in the data = overfitting!
= Too high: we oversmooth and lose detail = underfitting!
= The training set cannot be trusted to give us k, it will alwaysleadto k=1

The solution is to introduce a validation dataset:
= A new dataset that cannot be used for training
= We can then use it to find the hyperparameter &:

N,

val

> (v B — 1)

i

k = arg min
% val
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Model selection

But how do we pick a validation set?

x[-]

100 samples
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Model selection

But how do we pick a validation set?

split 80/20

T T T o : 5
o x XX x ] Py x XX x 1
X L e 1
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&
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% x X % x XX [ ox xX X x X X 1
717x xxx x»&%;(x 1 711X X><X X»&& ]
x % r X % 1
% ;X X P Training data % ;x X E
-2 XX x 1 ~2| X Validation data e E
0 2 4 6 0 2 4 6
x[-] x[-]
80 training samples
100 samples 20 validation
samples
%
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Model selection

—,——————
But how do we pick a validation set? 2r 3
1f 3
; Z o -
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Model selection

But how do we pick a validation set?

split 80/20
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Model selection

The bias-variance tradeoff:
= QOverly flexible models have low bias and high variance
= Qverly rigid models have high bias and low variance
= We may accept some bias in exchange for a lower variance... but not too much

—————— ——
. 20 ]
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Model selection

The bias-variance tradeoff:
= QOverly flexible models have low bias and high variance
= Qverly rigid models have high bias and low variance

= We may accept some bias in exchange for a lower variance... but not too much
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Let us do it one last time

Go to bit.ly/engmechml or scan the QR code:

= Look at the third interactive plot

= Change the value of % until the validation loss is as low as possible

[=]

_m_

_...... e w

_m_
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The bias-variance tradeoff

Why do we say flexible models have high variance? A closer look:
= Same example as before, but now 1000 different datasets of N = 50 each
= How much does the choice of dataset affect the final model?
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The bias-variance tradeoff

Why do we say flexible models have high variance? A closer look:

= Same example as before, but now 1000 different datasets of N = 50 each
= How much does the choice of dataset affect the final model?

L(x) = (Ep [y(x, D)) — h(x))’ +Ep [(y(x, D) — Ep [y(x, D)]
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The bias-variance tradeoff

Why do we say flexible models have high variance? A closer look:
= Same example as before, but now 1000 different datasets of N = 50 each
= How much does the choice of dataset affect the final model?
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The bias-variance tradeoff

Why do we say flexible models have high variance? A closer look:
= Same example as before, but now 1000 different datasets of N = 50 each
= How much does the choice of dataset affect the final model?
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The bias-variance tradeoff

Why do we say flexible models have high variance? A closer look:
= Same example as before, but now 1000 different datasets of N = 50 each
= How much does the choice of dataset affect the final model?
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Reaching a model y(z) with a global approximation

Observation model:
= We adopt a parametric model y(x, w) and assume some additive Gaussian noise:

t=y(x,w)+e with e~/\/‘(07,371)
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Reaching a model y(z) with a global approximation

Observation model:
= We adopt a parametric model y(x, w) and assume some additive Gaussian noise:

t=y(x,w)+e with ewN(O,,Bfl)

= Under the squared loss we have seen before, the regression function is simply:

Biltlx = [ tp(t]) dt = sl w)

= The learning problem then boils down to fitting a Gaussian distribution
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Reaching a model y(z) with a global approximation

Observation model:
= We adopt a parametric model y(x, w) and assume some additive Gaussian noise:

t=y(x,w)+e with e~N(0, ,371)
= Under the squared loss we have seen before, the regression function is simply:
Biltlx = [ tp(t]) dt = sl w)
= The learning problem then boils down to fitting a Gaussian distribution

The approximations for this flavor of models are now:
= Noise is Gaussian

= Response is unimodal (because the Gaussian has only one peak)
= The function y(x, w) might not be infinitely flexible (bias # 0)

i3
TUDelft

28/43



Giving y(z) some shape — linear basis function models

Simple linear regression, assuming D input features in x:
= Parametric model, linear in its arguments:

y(x,w) = wo + wiz1 + - - - + wpTp
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Giving y(z) some shape — linear basis function models

Simple linear regression, assuming D input features in x:
= Parametric model, linear in its arguments:

y(x,w) = wo + wiz1 + -+ + wpzp z o

Here we make them more flexible:
= General nonlinear functions of x as regressors:

M
Yo, w) =D widj(x) = w' p(x)
J

= Abias term ¢ = 1is usually included in ¢ . ]
= We are now unshackled from the original dimensionality D 1

'FUDeIft T o5 X(E-] 05 1
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Maximum Likelihood Estimation

Computing the likelihood of our data:
= The probability density of a given value ¢is:

p(tlw) =N (tly(x,w), 571)

= Given a dataset D with observations X = {x1, -+ ,xny}/t = [t1, -+ , tN],

i3
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Maximum Likelihood Estimation

Computing the likelihood of our data:
= The probability density of a given value ¢is:

p(tlw) =N (tly(x,w), 571)

= Given a dataset D with observations X = {x1,--- ,xy}/t = [t1, - , tn],
= The likelihood of drawing our whole dataset from this Gaussian is therefore:

p(D|w) = HN(tn|w¢<xn> Y

n=1
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Maximum Likelihood Estimation

Computing the likelihood of our data:
= The probability density of a given value ¢is:

p(tlw) =N (tly(x,w), 571)

= Given a dataset D with observations X = {x1,--- ,xy}/t = [t1, - , tn],
= The likelihood of drawing our whole dataset from this Gaussian is therefore:

p(D|w) = HN(tn|w¢<xn> Y

n=1

= Applying the natural logarithm to both sides, we get:

N | N )
Inp(D|w) = ZlnN(tﬂwT(b(xn),B*l) —l B——= ln(27r {2 Z ( xn)) }

n=1 n=1
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Maximum Likelihood Estimation

Computing the likelihood of our data:
= The probability density of a given value ¢is:

p(tlw) =N (tly(x,w), 571)

= Given a dataset D with observations X = {x1,--- ,xy}/t = [t1, - , tn],
The likelihood of drawing our whole dataset from this Gaussian is therefore:

p(D|w) = HN(tn|w¢<xn> Y

n=1

= Applying the natural logarithm to both sides, we get:

N | N )
Inp(D|w) = ZlnN(tﬂwT(b(xn),B*l) —l B——= ln(27r {2 Z ( xn)) }

n=1 n=1
= Maximizing the likelihood is therefore equivalent to minimizing the error in red
= This is where the usual loss function for ML regression comes from
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Maximum Likelihood Estimation

How does this look like? An example:

= Dataset with N = 100 observations, M = 6 basis functions (polynomials or Gaussians)

2 —— —
[ X X
L x XX ><>j)<< X X%
1 -
X
Z 0 }

R el y(z) (M = 6)
I Normalized ¢;
= Ground truth

ol !

0 2
x[]
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| |
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Overfitting and underfitting MLE models

Also here, flexibility is not always a good thing:

= Dataset with N = 10 observations, model with complete order M polynomials

= Again a tradeoff between bias and variance

[ @) M =9

[ =T Ground truth

i3
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| — Ground truth

0 2
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Reqgularized MLE models

L2 regularization, also known as Ridge Regression or Weight Decay:
= Model complexity is a bit hidden here. We can make it explicit by doing:

N —
WML = argwmin {; Z (tn — WT¢(xn))2 + ;\wTw} = WML = (‘I>T*1> + )\I) ! Tt

n=1

|y =9/
[ T Ground truth
£ 2 )
TUDelft

2 4 6
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Reqgularized MLE models

L2 regularization, also known as Ridge Regression or Weight Decay:
= Model complexity is a bit hidden here. We can make it explicit by doing:

N
1 2 A -1
W)L = arg min { 3 Z (tn — wT¢(xn)) + 2wTw} = WML = ((I>T<1> + )\I) Ty
w n=1
2 r 2 [
) I regularizing ) i
[ and learning X [
z o 1 z o 1
1k ] 1k ]
[ y(@) (M =9/A ] [ — y(z) (M =9/X = 10) «
i Ground truth 1 [ — Ground truth”
_2 7\ 1 1 _2 7\ 1 ! ! L | L ! ! | ! ! ! |
6 0 2 4 6

% 0
TUDelft
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Stochastic Gradient Descent

For now we have trained with the complete dataset at once:
= The error function contains all N data points:

N

Ep = % Z (tn — qub(xn)>2

n=1

Situations when it is interesting (or necessary) to deviate from this:
= Nis too large and computing (T ®) ~! becomes prohibitive

= The model is nonlinear (in w) and wy, does not have a closed-form solution
= The dataset is arriving sequentially (e.g. in real time from a sensor)
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Stochastic Gradient Descent

Instead of solving directly for wyr,, we can use Gradient Descent:
= Pick a (random) subset B of the dataset with Nz observations
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Stochastic Gradient Descent

Instead of solving directly for wyr,, we can use Gradient Descent:
= Pick a (random) subset B of the dataset with Ny observations
= Update w with gradients coming from B and with a fixed learning rate »:

Ni
w(THD) = (1) _ nVEz with VEz = — Z (tn — W(T)Tqﬁ(xn)) ¢(xn)T

n=1
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Stochastic Gradient Descent

Instead of solving directly for wyr,, we can use Gradient Descent:
= Pick a (random) subset B of the dataset with Ny observations
= Update w with gradients coming from B and with a fixed learning rate »:

Ns
wtD) = w(") _ yVEz with VEz=— Z (tn - W(T)Tqﬁ(xn)) o(xn)T

n=1

= Every time the complete dataset has been seen, we say an epoch has passed
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Stochastic Gradient Descent

Instead of solving directly for wyr,, we can use Gradient Descent:
= Pick a (random) subset B of the dataset with Nz observations
= Update w with gradients coming from B and with a fixed learning rate »:

Ni
wtD) = w(") _ yVEz with VEz=— Z (tn - W(T)Tq.')(xn)) o(xn)T

n=1

= Every time the complete dataset has been seen, we say an epoch has passed

Variations: o ..
= Ny = 1: Online stochastic gradient descent validation training
® 1 < Np < N: Minibatch SGD (most popular) split dataset
= Nz = N: Full batch gradient descent
test ¢

WD) = (™ )ﬂll

update weights every hatch

mini-batching

1
;huﬂ'lu + train all batches = one epoch
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Stochastic Gradient Descent

An example:
= Same example as before, with N = 100 and M = 6 polynomial basis functions
= We fix the learning rate n = 0.001 and minibatch size Nz = 10
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Stochastic Gradient Descent

An example:

= Same example as before, with N = 100 and M = 6 polynomial basis functions
= We fix the learning rate n = 0.001 and minibatch size Nz = 10
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Stochastic Gradient Descent

An example:
= Same example as before, with N = 100 and M = 6 polynomial basis functions
= We fix the learning rate n = 0.001 and minibatch size Nz = 10
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Stochastic Gradient Descent

An example:
= Same example as before, with N = 100 and M = 6 polynomial basis functions
= We fix the learning rate n = 0.001 and minibatch size Nz = 10

no
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Stochastic Gradient Descent

An example:
= Same example as before, with N = 100 and M = 6 polynomial basis functions
= We fix the learning rate n = 0.001 and minibatch size Nz = 10
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Stochastic Gradient Descent

An example:

= Same example as before, with N = 100 and M = 6 polynomial basis functions
= We fix the learning rate n = 0.001 and minibatch size Nz = 10
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Stochastic Gradient Descent

Using SGD progress to spot signs of overfitting:
= Tracking the error on a validation dataset after every epoch

= This motivates the early stopping strategy popular in the deep learning community
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Stochastic Gradient Descent

Using SGD progress to spot signs of overfitting:
= Tracking the error on a validation dataset after every epoch
= This motivates the early stopping strategy popular in the deep learning community
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Stochastic Gradient Descent

Using SGD progress to spot signs of overfitting:
= Tracking the error on a validation dataset after every epoch
= This motivates the early stopping strategy popular in the deep learning community
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Stochastic Gradient Descent

Using SGD progress to spot signs of overfitting:
= Tracking the error on a validation dataset after every epoch
= This motivates the early stopping strategy popular in the deep learning community
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Stochastic Gradient Descent

Using SGD progress to spot signs of overfitting:
= Tracking the error on a validation dataset after every epoch
= This motivates the early stopping strategy popular in the deep learning community
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Stochastic Gradient Descent

Using SGD progress to spot signs of overfitting:
= Tracking the error on a validation dataset after every epoch

= This motivates the early stopping strategy popular in the deep learning community
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Stochastic Gradient Descent

Using SGD progress to spot signs of overfitting:
= Tracking the error on a validation dataset after every epoch
= This motivates the early stopping strategy popular in the deep learning community
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Adaptive basis functions

Up until now, the basis functions have been fixed a priori:
= Polynomials: number of terms M, polynomial degrees of each term
= Gaussians: bandwidth s, basis function centers y;

Y= dr1(X)wr + g2(X)w2 + -+ + du(x)wu
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Adaptive basis functions

For now, only half of the model is trainable:

= Input to hidden encoding (¢1 - - - ¢ ) fixed, hidden to output decoding (w) trained
= What if we could also train the first half?

latent (hidden) layer

input layer output layer

V\
\/
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Artificial Neural Networks

Replacing basis functions by several layers of nonlinear transformations:
= Neural Network: layers of neurons linked by weighted connections
= Values at the red layer can be seen as coming from new, learned basis functions ¢(x)
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Neural Networks — Activation functions

For a given neuron, forward propagation happens in two steps:
= A linear combination of values from the previous layer:

= A nonlinear transformation with an activation function:

Choosing the activation function:

= Application dependent

= Can be seen as a hyperparameter
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Neural Networks — Example

Same example as before, but now with a neural network:

= Full batch Adam SGD (variable learning rate)
= Two hidden layers, 10 neurons each, ReLU activation
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Neural Networks — Example

Same example as before, but now with a neural network:
= Full batch Adam SGD (variable learning rate)
= Two hidden layers, 10 neurons each, ReLU activation
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Neural Networks — Example

Same example as before, but now with a neural network:
= Full batch Adam SGD (variable learning rate)
= Two hidden layers, 10 neurons each, ReLU activation
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Neural Networks — Example

Same example as before, but now with a neural network:
= Full batch Adam SGD (variable learning rate)
= Two hidden layers, 10 neurons each, ReLU activation
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Recap

You should now be able to:
= Understand and compare different approaches for regression modeling
= Construct parsimonious regression models for general applications
= Critically assess model performance from a probabilistic standpoint

Main takeaways:
= Model flexibility is not always beneficial, overfitting can be a major issue
= Selecting good models always boils down to balancing bias and variance
= Simply fitting data is not learning. ML is all about finding hidden patterns in data
= Neural Networks are not magic, can be seen as adaptive versions of simpler models
= Fancier deep learning models share this same foundation but add extra heuristics
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