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Outline

First part

1) Optimization origins

2) Understanding the general components of an optimization 
problem

3) Optimization vs Simulation in modeling a real-world 
problem

4) Quiz

Second part 

1) Examples of optimization problems

2) Types of optimization problems 



Where is Optimization coming from?

❑ In the UK and in the US, scientists started to be called between the first 

and second world Wars to collaborate with the military in doing research

on military operations.

❑ A second world war was on the horizon and both countries wanted to be 

prepared by optimizing their logistics to maximize their chances of 

winning battles.

❑ They created a field of applied sciences known as Operations Research

in which Optimization can be placed. 



The radar
❑ Modern operations research originated in the UK in 1937 and 

was the result of an initiative of the superintendent, A. P. 

Rowe. 

❑ Rowe conceived the idea to analyze and improve the working 

of the UK's early warning radar system, Chain Home (CH). 

Initially, he analyzed the operation of the radar equipment and 

its communication networks to provide a complete vision of the 

south coast of the UK. How many radars do you need? 

Where should they be located?

❑ The analysis was later expanded to include the operating 

personnel's behavior to plan the Human Resources (HR) of 

this system.

❑ This revealed unappreciated limitations of the CH network and 

allowed remedial action to be taken which helped win the war.

Chain Home transmitter antenna



1947: The Simplex method is developed

❑ George Dantzig worked on planning methods for the US Army 

Air Force during World War II using a desk calculator to find 

solutions to hard operational problems. In 1946 he was 

challenged to mechanize/automate the planning process 

that he was using.

❑ Dantzig formulated the planning problem, typically a problem of 

assigning resources to activities, as linear inequalities (or 

equalities) inspired by the work of Wassily Leontief, however, at 

that time he didn't include an objective as part of his 

formulation, he was mainly searching for feasible solutions 

to a problem.
George Dantzig 

(1914-2005)



The work of Leontief

Wassily Leontief

(1906-1999)

❑ In this example a simple economy is described through three main products/activities, Coal, Electricity, and Steel. It’s

easy to produce linear equations where the interdependencies between these products are apparent once you have

the production factors (how much you need from each one of those to produce the other).

❑ Using the right data and this logic it’s possible to describe the functioning of many systems and their corresponding

“products”.

Coal Electricity Steel

Coal 0 0.4 0.6

Electricity 0.6 0.1 0.2

Steel 0.4 0.5 0.2

1 1 1

Input/Output matrix in a simple economy:

pC = 0 × pC+ 0.4 × pE +0.6 × pS
pE = 0.6 × pC+ 0.1 × pE +0.2 × pS
pS = 0.4 × pC+ 0.5 × pE +0.2 × pS



Adding an objective

▪ Without an objective, in many planning problems a vast number of solutions can be 
feasible, and therefore to find the "best" feasible solution, military-specified objectives -
don’t forget that Dantzig was studying military operations - must be used that describe 
how goals can be achieved as opposed to specifying a specific value for this goal on itself. 
For example, it’s not about transporting 1000 soldiers but finding a way to transport as 
many as possible with the existing resources.

▪ Dantzig's core insight was to realize that most such ground objectives can be translated into 
a linear objective function that needs to be maximized (or minimized) which measures the 
quality/performance of the solutions.

▪ Development of the final method, the so-called simplex method, was evolutionary and 
happened over a period of about a year.



A linear program that can be solved through the simplex 
method

Linear inequalities/equalities

Objective function

𝑥 and 𝑦 are continuous variables whose values we want to 

determine and in this case, they must be positive.

max 𝐹 = 2𝑥 + 𝑦

3𝑥 + 𝑦 ≤ 150
𝑥 + 𝑦 ≤ 90

𝑥 ≥ 40
𝑦 = 20

𝑥, 𝑦 ≥ 0 Variables domain



Max (Min) 𝑍 = 𝑐1 𝑥1 + 𝑐2 𝑥2 + …+ 𝑐𝑛 𝑥𝑛

𝑎11𝑥1 + 𝑎12𝑥2 + …+ 𝑎1𝑛𝑥𝑛 (≤,=,≥) 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + …+ 𝑎2𝑛𝑥𝑛 (≤,=,≥) 𝑏2

⋯
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + …+ 𝑎𝑚𝑛𝑥𝑛 (≤,=,≥) 𝑏𝑚

subject to,

Objective function Objective function coefficients

Decision variable

Independent 

termTechnology coefficients, they measure the usage of a 

resource

C
o
n
s
tr

a
in

ts

𝑛 is used for the number of variables, and 

𝑚 for the number of constraints

In general, we have, in a linear mathematical program



Optimization
▪ A simulation model predicts the performance of a 

system under a specific set of inputs (experimental 
parameters).In general, with simulation, we are not 
searching for an optimal solution but for the 
system’s performance under different scenarios 
that are selected according to their importance or 
likelihood.

▪ Some modeling approaches attempt 
to provide optimal answers for 
problems (e.g., mathematical 
programming) or near optimum 
answers (e.g., heuristic and meta-
heuristic methods). 

Simulation



❑ Imagine the case of planning a bus line 

through simulation. You have your 

route defined (the streets where it’s 

going to go through) and the demand 

around that route is dependent on the 

frequency of the buses and the bus 

stop distance. You want to simulate the 

Bus operation in order to maximize 

your profit. 

❑ Variables: Bus fleet size (b); Number of 

stops (s) in the line.

A small problem?



➢ If we define the fleet dimension as a parameter that varies between 5 and 15 buses, we have 11 

bus fleet dimensions to test in a simulation model.

➢ If we define the number of stops to be between 10 and 30, we have 21 possible stops’ 

dimensions.

➢ We have to test b x s=231 combinations, we also call this the total enumeration of the 

solutions (231 is manageable in simulation)

➢ Imagine now that the route line is not designed yet (its shape -> the order of stops to visit) then for 

each combination of fleet and number of stops you would have to test the factorial of the number 

of bus stops which are all the combinations of stops that form a path ( n − 1 !/2). For 30 stops this 

would be 30 − 1 !/2 = 4.42 × 1030. 

This leads to an impractical number of scenarios to test in simulation!

This problem will be better studied with optimization techniques in the so-called network 

design problems which can be solved, to a certain extent, with mathematical programming 

as well or witj specific heuristics.



Computation power

5 MB computer being loaded on an airplane

500 GB computers “loaded” on an airplane



Typical workflow for an optimization study

Problem

Model Optimum

Solution

Abstract

Method

Validation

Validation

Does the model 

capture the 

constraints of 

the problem? 

Use domain 

specialists

Can the solution be 

implemented? Is it the 

solution to the problem?

Implement

Verification

Is it well 

implemented?



Quiz: are you following?



A note on the non-linear constraint: 23/X1=45

This is indeed a non-linear constraint. X1 is raised to the power of -1.

By rearranging the constraint, you can make it linear: 23-45X1=0

So indeed, many times, it is possible to work with your constraints and make 

the problems simpler. 

But notice a nuance: in the original constraint X1 always had to be positive 

otherwise the result of the fraction is infinity, whilst in the second version X1 

can also be zero. If that’s not an issue in your problem, then you can use the 

linear version. 



Break



Why optimization?

▪ Many problems require the identification of the best (or the worst) solution, decision or design.

▪ Usually misused. Example, “optimizing the design of a bridge” to refer to the improvement of the design, 
which is not necessary the best design, it is just better.

▪ Applications

▪ As part of other mathematical tools, such as LS, MLE, ML, etc.

▪ Direct applications: Optimal structural design, resource distribution, logistics, etc.

Let’s see some direct applications of optimization problems



Optimizing FRP (Fiber-Reinforced 
Polymer) bridges

▪ Goal: to identify the optimal geometry and plies 
layout with consideration of the tradeoff between 
cost and sustainability. The design must guarantee 
the structural safety conditions. 

▪ MSc Thesis 

▪ Ola Åsbø



Optimal component level 
construction schedule
▪ Goal: to determine the most efficient process for 

building components that have physical 
interdependencies (fulfilling constructive constraints), 
with consideration of the tradeoff between the cost 
and construction duration.

▪ MSc Thesis - Xinzhi Jiang 



Designing road networks for 
automated vehicles
▪ Goal: To identify the best location and time for 

deploying enhanced roads for automated vehicles, 
minimizing deployment cost and maximizing 
efficiency and safety given the uncertain evolution 
path of automated driving technology and the 
travelers’ mode and route choice behavior.

PhD thesis 

Bahman Madadi



Optimization of electric vehicles 
charging station locations

▪ Goal: to identify the optimal distribution of charging 
stations that maximizes the utility accounting for the 
population density, existence of other charging 
stations, and other urban elements (e.g., rivers, 
parks…).

▪ CME4501 Engineering Systems Optimization - Final project

▪ Tomas Raaphorst & Vitali van Elk 

In groups of 2 – 3 discuss

❑ What is/are the objective function(s)?

❑ What is/are the decision/design variable(s)?

❑ What is/are the constraint(s)?



Optimization of electric vehicles 
charging station locations

▪ Goal: to identify the optimal distribution of charging 
stations that maximizes the utility accounting for the 
population density, existence of other charging 
stations, and other urban elements (e.g., rivers, 
parks…).

▪ CME4501 Engineering Systems Optimization - Final project

▪ Tomas Raaphorst & Vitali van Elk 

What is the objective function?

✓ Maximize the utility (e.g., user accessibility, 

service coverage, etc.)

What is the decision/design variable?

✓ Distribution of charging stations (e.g., coordinates, 

0/1 grid, number and average distance, etc.)

What are the constraints?

✓ Minimum charger-citizen ratio

✓ Minimum distance to other charging stations

✓ Maximum distance to other charging stations

✓ No chargers in a park, in a river, etc.

✓ …



What is included under the concept of optimization?



Optimization Models. Taxonomy

Optimization 
models

Continuous 
vs Discrete 
variables

Single vs 
Multi-

Objective

Convex vs 
Non-convex 

problems

Deterministic 
vs stochastic

Constrained vs 
Unconstrained 

problem

❖ Continuous variables: 

time, distances, physical 
properties, etc.

❖ Discrete variables: 

number of wind turbines, 
decisions such as doing 
something or not, type of 
materials, etc.



Optimizing the layout of the 
offshore wind farms in Norway

▪ Goal: Determine the optimal layout of wind 
turbines to produce the highest annual energy 
production with the minimum cost. Considering 
different types of turbines, their power curves, 
physical characteristics, wake effect, etc.

▪ CME4501 Engineering Systems Optimization - Final project

▪ J. Aulbers, O. Åsbø & I. Timori



Optimal Wind Turbine (WT) Farm

Decision variables:

• n: number of WTs (n is between 10 and 50).

• d: the closest distance between two WTs (d is between 15 and 100 m).

d

Discrete variables 

Continuous variables 



Optimization Models. Taxonomy

Optimization 
models

Continuous 
vs Discrete 
variables

Single vs 
Multi-

Objective

Convex vs 
Non-convex 

problems

Deterministic 
vs stochastic

Constrained vs 
Unconstrained 

problem

❖ Single objective:

❖ Multi-objective:



Optimal Wind Turbine (WT) Farm

Objective function:

• Maximize the annual production: 

𝑴𝒂𝒙𝒏,𝒅 𝒏. 𝑷𝒖𝒏𝒊𝒕(𝒅)

with 𝑃𝑢𝑛𝑖𝑡 𝑑 being the energy production of 1 WT that depends on the distance between WTs

• Minimise the annual maintenance cost: 

𝑴𝒊𝒏𝒏,𝒅 𝒏. 𝑪𝒎
with 𝐶𝑚 being the annual maintenance cost of 1 WT

• Both objectives:     𝑴𝒊𝒏𝒏,𝒅 {− 𝒏. 𝑷𝒖𝒏𝒊𝒕 𝒅 ; 𝒏. 𝑪𝒖𝒏𝒊𝒕}

d

Single objectives

Multi-objective

Decision variables:

• n: number of WTs,  [10,50]

• d: the closest distance between two WTs  [15,100]



Optimization Models. Taxonomy

❖ Unconstrained problem: the 
solution space is not bounded. All the 
configurations are possible 
candidates for being optimal. 

❖ Constrained problem: the solution 
space is bounded. 

❖ Feasible region: Only a set of 
solutions are possible candidates. 

❖ Unfeasible region: There is not a 
possible solution fulfilling all the 
constraints.

Optimization 
models

Continuous 
vs Discrete 
variables

Single vs 
Multi-

Objective

Convex vs 
Non-convex 

problems

Deterministic 
vs stochastic

Constrained vs 
Unconstrained 

problem



Optimal Wind Turbine (WT) Farm

Constraints:

• Limited construction budget of 50M EURO:  

𝒏 𝑪 ≤ 𝟓𝟎𝑴
with 𝐶 being the construction cost of 1 WT

• Limited annual maintenance cost of 0,7M EURO: 

𝒏 𝑪𝒎 ≤ 𝟎, 𝟕𝑴
with 𝐶𝑚 being the annual maintenance cost of 1 WT

• …

d

Constrained problem

If the construction (𝐶) or maintenance costs 
(𝐶𝑚) of a WT is larger than 5M or 0,07M EURO 
respectively, there is no possible solution. In 
such a case, we have an unfeasible problem.

Decision variables:

• n: number of WTs,  [10,50]

• d: the closest distance between two WTs  [15,100]

Objective function: 

• Maximize the annual production:  𝑴𝒂𝒙𝒏,𝒅 𝒏. 𝑷𝒖𝒏𝒊𝒕(𝒅)



Optimization Models. Taxonomy

Optimization 
models

Continuous 
vs Discrete 
variables

Single vs 
Multi-

Objective

Convex vs 
Non-convex 

problems

Deterministic 
vs stochastic

Constrained vs 
Unconstrained 

problem



Convex problems

Convex function

Non-convex function

A convex optimization problem is a problem where all the 

constraints and the objective are convex functions



Optimal Wind Turbine (WT) Farm

➢ If both, the objective function and all constraints are convex, the problem is convex. 

➢ Linear and quadratic functions are convex.

✓ This optimization problem is NON-CONVEX because the objective function is non-convex

d

Decision variables:

• n: number of WTs,  [10,50]

• d: the closest distance between two WTs  [15,100]

Objective function: 

• Maximize the annual production:  𝑴𝒂𝒙𝒏,𝒅 𝒏. 𝑷𝒖𝒏𝒊𝒕 𝒅

Constraints:

• 𝒏 𝑪 ≤ 𝟓𝟎𝑴
• 𝒏 𝑪𝒎 ≤ 𝟎, 𝟕𝑴

Linear = convex Even if 𝑷𝒖𝒏𝒊𝒕 𝒅 were 
linear, the objective 
function would involve the 
product of two variables, 
thus, it is non-convex.



Optimization Models. Taxonomy

Optimization 
models

Continuous 
vs Discrete 
variables

Single vs 
Multi-

Objective

Convex vs 
Non-convex 

problems

Deterministic 
vs stochastic

Constrained vs 
Unconstrained 

problem

Common convex problem:

• Linear Programming (LP) ✓



Optimization Models. Taxonomy

Optimization 
models

Continuous 
vs Discrete 
variables

Single vs 
Multi-

Objective

Convex vs 
Non-convex 

problems

Deterministic 
vs stochastic

Constrained vs 
Unconstrained 

problem

❖ Deterministic optimization: all the 
parameters of the optimization 
problem are deterministic. There is 
not variability in the problem 
definition.

❖ Stochastic optimization: The 
definition of optimization problem 
presents variability or uncertainty. 
The optimal solution of a possible 
scenario is not necessary the optimal 
solution of another possible scenario.



Optimal Wind Turbine (WT) Farm

In case the construction (𝐶) or/and maintenance costs (𝐶𝑚) present variability.

Then, the constraints can be expressed as 

𝑷𝒓𝒐𝒃 𝒏 𝑪 ≤ 𝟓𝟎𝑴 ≥ 𝟎, 𝟗𝟎
𝑷𝒓𝒐𝒃(𝒏 𝑪𝒎 ≤ 𝟎, 𝟕𝑴) ≥ 𝟎, 𝟗𝟓

d

Decision variables:

• n: number of WTs,  [10,50]

• d: the closest distance between two WTs  [15,100]

Objective function: 

• Maximize the annual production:  𝑴𝒂𝒙𝒏,𝒅 𝒏. 𝑷𝒖𝒏𝒊𝒕 𝒅

Constraints:

• 𝒏 𝑪 ≤ 𝟓𝟎𝑴
• 𝒏 𝑪𝒎 ≤ 𝟎, 𝟕𝑴

2,5                       3,25                      5,0        

𝐶 (M EURO)

Deterministic

Stochastic



What is included under the concept of optimization?



Optimization Methods

Optimality-criteria 
methods

Equality constraints

Lagrange

Equality & inequality 
constraints

KKT

Search Methods 
(iterative search)

Gradient-based 
methods

Convex

(Linear)

Simplex method
Interior-Point method

Non-convex

Branch & bound 
method

Non-gradient-based 
methods

(Meta)heuristics

Genetic Algorithm, 
Simulated Annealing, 

Particle Swarm…

Optimization Methods. Taxonomy

Brute force

Level of complexity of the optimization model



Optimization Methods

Optimality-criteria 
methods

Equality constraints

Lagrange

Equality & inequality 
constraints

KKT

Search Methods 
(iterative search)

Gradient-based 
methods

Convex

(Linear)

Simplex method
Interior-Point method

Non-convex

Branch & bound 
method

Non-gradient-based 
methods

(Meta)heuristics

Genetic Algorithm, 
Simulated Annealing, 

Particle Swarm…

Optimization Methods. Taxonomy

✓ ✓

CME4501 

Engineering Systems 

Optimization

✓



Monday Tuesday Wednesday Thursday Friday

Optimization Kick-off Q&A Session Workshop Session

Integer programming 

problem (Planet 

versus Profit)

Q&A Session Project Session

Road network 

problem

Suggested progress: Suggested progress: Suggested progress: Suggested progress:

Read Sec 5.1-5.3

Sec 5.4

Video 1 and 2

Sand and clay 

problem formulation

Sec 5.5

Video 3

Augmented form of 

math problem

Sec 5.6

Video 4

SIMPLEX Method

Sec 5.7

Video 5

Integer Programming

After the workshop:

Sec 5.9

Video 6

Genetic algorithm

Sec 5.11

Road network design 

problem (this 

introduces the project 

for Friday)

Suggested schedule



Questions!

43
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