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Discrete signals

A discrete signal has a value only at discrete 
values of the running variable (usually time). 
Formally the signal is then to be referred to as 
discrete-time signal.

The interval between these discrete values of  
running variable is often uniform, e.g. .

In-between these values, signal may be zero, 
undefined, or of no interest!

Note:
continuous-time signal is written as 
discrete-time signal is usually written as , or ௡ (sequence ଴ ଵ ଶ )

∆𝑡



What about discrete time (sampled) signals? 
Does sampling have any impact on ?



Fourier transform of sampled signal

Finally, Fourier transform of sampled signal becomes:

so, spectrum of sampled signal is spectrum of original signal, but repeated with 
‘period’ ௦ (in frequency domain); copies of spectrum are called aliases

௦ ௦

௞ୀஶ

௞ୀିஶ

(left) spectrum of an assumed original signal 𝑥(𝑡), (right) and that of its sampled equivalent
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Sampling theorem

Band-limited signal , having no frequency components above ௛ Hertz, is 
completely specified by samples taken at uniform rate greater than ௛ Hertz.

Note: Nyquist rate is characteristic of signal, whereas Nyquist frequency, 
௙ೞ

ଶ
, is 

characteristic of sampling system

(in practice we consider only domain 
௙ೞ

ଶ

௙ೞ

ଶ
of spectrum obtained from 

sampled signal)

frequency ௛ is called Nyquist rate



Aliasing

Note that in order to reconstruct original continuous-time signal from samples, 
it is crucial to sample signal at rate larger than Nyquist rate.

When sampling signal below this rate, the adjacent spectra (aliases) will 
overlap, and it will be impossible to reconstruct signal from its samples. *)

This is called aliasing, and is illustrated in the following example.

*) information is lost, and this is irreversible … :-(



Aliasing example – signal
As example we study the effect of sampling 
sinusoidal signal with frequency of ௖ Hz



Aliasing example – signal

First, we look at correctly sampled signal, with ௦ Hz ( ௦ ௖)

Spectrum (which is real, because is even) of original continuous-time 
signal will have two Dirac-functions with weight 3, at Hz and Hz,

i.e. ల

మ



Aliasing example – sampled at 14 Hz



Aliasing example – spectrum

௦ Hz

௦ ௦ ௦

௞ୀஶ

௞ୀିஶ with 

௦ ௦

௞ୀஶ

௞ୀିஶ



Aliasing example – spectrum

௦  Hz
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Aliasing example – spectrum

௦  Hz

we consider only domain 
௙ೞ

ଶ

௙ೞ

ଶ



Aliasing Example – Spectrum

௦  Hz

we consider only domain 
௙ೞ

ଶ

௙ೞ

ଶ



Aliasing example – correct result

original signal
sampled & reconstructed signal



Aliasing example – sampled at 7 Hz
violating sampling theorem:

௦ Hz ( ௦ ௖)



Aliasing example – spectrum

௦  Hz
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Aliasing example – spectrum

௦  Hz

we consider only domain 
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Aliasing example – spectrum

௦  Hz

we consider only domain 
௙ೞ

ଶ

௙ೞ

ଶ

spectrum of sampled signal will have peaks at and Hz …



Aliasing example – incorrect result

just by eyeballing the samples, a lower frequency signal appears …

original signal          sampled & reconstructed signal



Sampling - summary

The Fourier transform of a sampled signal ௦ is given as:

where ௦ is sampling frequency.

To prevent aliases, this frequency ௦ should be larger than ௛, where ௛ is 
highest frequency occurring in signal.

௦ ௦

௞ୀஶ

௞ୀିஶ
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Objectives

▪ Discrete Fourier Transform (DFT)

 tool to be used in practice

to compute Fourier transform of sampled signal ௦



Discrete Time Fourier Transform - DTFT

We discretize Fourier transform of ௦ by replacing integral by summation 
over time:

௦ ௡
ି௝ଶగ௙௡∆௧

௡ୀஶ

௡ୀିஶ

with ௡ , and where complex exponential is also
evaluated at times , and 

This is still a continuous function of frequency ( ), periodic with period ௦, 
exactly as we got with impulse train sampling, and known as Discrete Time 
Fourier Transform (DTFT).

t

x(t)

t

x0

x1 x2

x3

x4 *)

*) actually function 𝑥 𝑡  𝑒ି௝ଶగ௙ rather than just 𝑥(𝑡)



Discrete Fourier Transform - DFT

We want to analyse spectrum ௦ of sampled signal ௦ using a 
computer, i.e. by Digital Signal Processing (DSP). Two issues remain, 
however:

we cannot measure signal forever, so we cannot have .

once sampled in time domain, still continuous function (of frequency)
does not lend itself to DSP – algorithm requires discrete data points as
input, and delivers discrete data points as output …

௦ ௡
ି௝ଶగ௙௡∆௧

௡ୀஶ

௡ୀିஶ



DFT – action item 1
we cannot measure signal forever

sampled signal ௦ is sequence ௡ with , so values ௡
at discrete times (with )

we consider it only for time duration , resulting in just N samples; 
effectively this means applying window 

௧

்
in practice we set signal to zero 

outside window, hence: ௦௪
௧

் ௦

This means ௡ with has finite length



DFT – action item 2

continuous function does not lend itself to DSP

sample frequency spectrum: we will evaluate it only at discrete frequencies

as we only use piece of of signal, smallest resulting frequency will be 

଴
ଵ

்

ଵ

ே∆௧

௙ೞ

ே
, known as frequency (or spectral) resolution

largest frequency is related to sampling frequency ௦
ଵ

୼௧

hence, spectrum will be computed at frequencies 
ଵ

ே ௦
ଶ

ே ௦
ேିଵ

ே ௦

(so-called analysis-frequencies)



DFT

This results in Discrete Fourier Transform (DFT): tool to be used in practice.

DFT turns samples of signal into samples of spectrum ௦௪ :

௦௪ ଴

with both and 



DFT: action-item 1

Sampled, windowed signal ௦௪ equals sequence ௡ with .

Then, ௦௪ ௦௪
ି௝ଶஶ

ିஶ
, which we discretize into:

௦௪ ௡
ି௝ଶగ௙௡∆௧

ேିଵ

௡ୀ଴

(similar to DTFT)
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x4

*) actually function 𝑥 𝑡  𝑒ି௝ଶగ௙ rather than just 𝑥(𝑡)

*)



DFT: action-item 2

Finally, we sample frequency spectrum, turning ௦௪ into ௦௪௦ by 
considering only with ଴

ଵ

்

ଵ

ே∆௧

௙ೞ

ே
and :

௦௪௦ ௡
ି௝ଶగ௞∆௙௡∆௧

ேିଵ

௡ୀ଴

௡
ି௝

ଶగ
ே

௞௡

ேିଵ

௡ୀ଴

Hence sequence ௞ equals ௦௪௦ at for .

௞ ௡
ି௝

ଶగ
ே

௞௡

ேିଵ

௡ୀ଴

with 



DFT - summary

with both and 

With ௞, we consider function by restoring frequency dimension,

frequency resolution: ଴
ଵ

்

ଵ

ே∆௧

௙ೞ

ே

With ௡, we consider function by restoring time dimension,

time resolution: 
ଵ

௙ೞ

௞ ௡
ି௝

ଶగ
ே

௞௡

ேିଵ

௡ୀ଴

௡ ௞

ேିଵ

௞ୀ଴

௝
ଶగ
ே

௞௡



DFT - summary

In many textbooks, we find DFT as:

with both and 

Hence, without factors and 
ଵ

∆௧
. This is also how DFT is implemented in 

programming languages like Matlab and Python; user has to restore time and 
frequency dimension!

௞ ௡
ି௝

ଶగ
ே

௞௡

ேିଵ

௡ୀ଴

௡ ௞

ேିଵ

௞ୀ଴

௝
ଶగ
ே

௞௡
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Objectives

▪ energy and power signals

▪ Parseval’s theorem

▪ Power Spectral Density (PSD)

▪ basic spectral estimation: periodogram

so far looked at amplitude spectrum resulting from Fourier Series and magnitude
spectrum from Fourier transform, ௞ and resp; can we connect 
amplitudes at different frequencies to physical notions of energy and power?

how is energy/power of signal distributed over frequency → spectral analysis



Energy and power signals

Definitions of energy and power stem from electrical engineering. Suppose 
is voltage across resistor producing current 



Energy and Power signals
Instantaneous power is defined as , and , so 

ଶ ௨మ ௧

ோ

with , instantaneous power per Ohm is given as:
ଶ ଶ

Integrating over , we define total energy and average power as:

்→ஶ

ଶ்

ି்
in Joule [J]

்→ஶ

ଵ

ଶ்
ଶ்

ି்
in Watt [W]

(on a per Ohm basis)

𝑢(𝑡) in [V], 𝑖(𝑡) in [A]



Energy and power signals

For signal , total energy (normalized to unit resistance) is defined as:

in Joule [J = V A s = N m]

and average power (normalized to unit resistance) as:

in Watt [W = J/s]

For real signals, modulus signs may be removed from equations above.

்→ஶ

ଶ
்

ି்

்→ஶ

ଶ
்

ି்



Parseval’s theorem (Fourier transform)

We obtain Parseval’s theorem for Fourier transforms:

ଶ
ஶ

ିஶ

ଶ
ஶ

ିஶ

Energy Spectral Density (ESD)



Parseval’s theorem (DFT)

Note that ௞ denotes DFT-coefficients, with included

Power of signal, contained in frequency band of width భ

೅
, at frequency 

is:
ଵ

் ௞
ଶ in [W/Hz]    for  

and actually is power density

𝑋௞ = ∆𝑡 ෍ 𝑥௡𝑒ି௝
ଶగ
ே ௞௡

ேିଵ

௡ୀ଴



Parseval’s theorem (DFT) → periodogram
ଵ

் ௞
ଶ in [W/Hz]     for  and   భ

೅

This turns out to be an estimate for the PSD, and is referred to as 
periodogram (estimate may be indicated by hat-symbol, hence ).

Product is contribution by frequency band with width at 
frequency , to power of signal.

Periodogram defined for ௦, or equivalently ೑ೞ
మ

೑ೞ
మ

(two-
sided), with ௦

భ

∆೟

𝑋௞ = ∆𝑡 ෍ 𝑥௡𝑒ି௝
ଶగ
ே ௞௡

ேିଵ

௡ୀ଴

Note that 𝑋௞ denotes DFT-coefficients,
with ∆𝑡 included:

f [Hz]

S(f) [W/Hz]

f

^

fs
2

fs
2

(density)

k=0 k=1 k=2 …


