Modelling, Uncertainty and Data for Engineers (MUDE)

Signal Processing: discrete time sampling, DFT & spectrum

Christian Tiberius

Modelling, Uncertainty and Data for Engineers (MUDE)

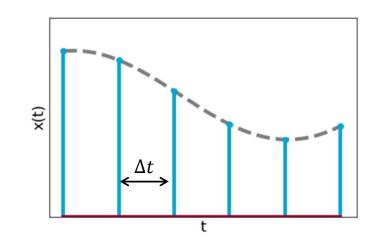
Signal Processing: sampling Christian Tiberius

Discrete signals

A **discrete** signal has a value only at discrete values of the running variable (usually time). Formally the signal is then to be referred to as discrete-time signal.

The interval between these discrete values of running variable is often uniform, e.g. Δt .

In-between these values, signal may be zero, undefined, or of no interest!



Note:

continuous-time signal is written as x(t) discrete-time signal is usually written as x[n], or x_n (sequence x_0, x_1, x_2 ...)

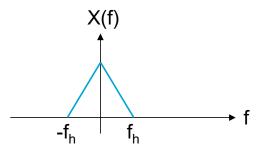
What about discrete time (sampled) signals? Does sampling have any impact on X(f)?

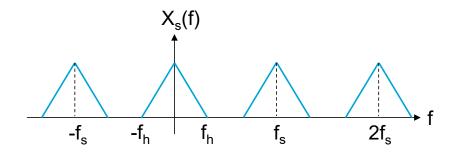
Fourier transform of sampled signal

Finally, Fourier transform of *sampled* signal becomes:

$$X_{S}(f) = \sum_{k=-\infty}^{k=\infty} X(f - kf_{S})$$

so, spectrum of sampled signal is spectrum of original signal, but repeated with 'period' f_s (in frequency domain); copies of spectrum are called aliases





(left) spectrum of an assumed original signal x(t), (right) and that of its sampled equivalent

Sampling theorem

Band-limited signal x(t), having no frequency components above f_h Hertz, is completely specified by samples taken at *uniform* rate greater than $2f_h$ Hertz.

frequency $2f_h$ is called **Nyquist rate**

Note: Nyquist *rate* is characteristic of *signal*, whereas Nyquist *frequency*, $\frac{f_s}{2}$, is characteristic of *sampling system*

(in practice we consider only domain $-\frac{f_s}{2} < f \le \frac{f_s}{2}$ of spectrum obtained from sampled signal)

Aliasing

Note that in order to reconstruct original continuous-time signal from samples, it is crucial to sample signal at rate larger than Nyquist rate.

When sampling signal *below* this rate, the adjacent spectra (aliases) will overlap, and it will be impossible to reconstruct signal from its samples. *)

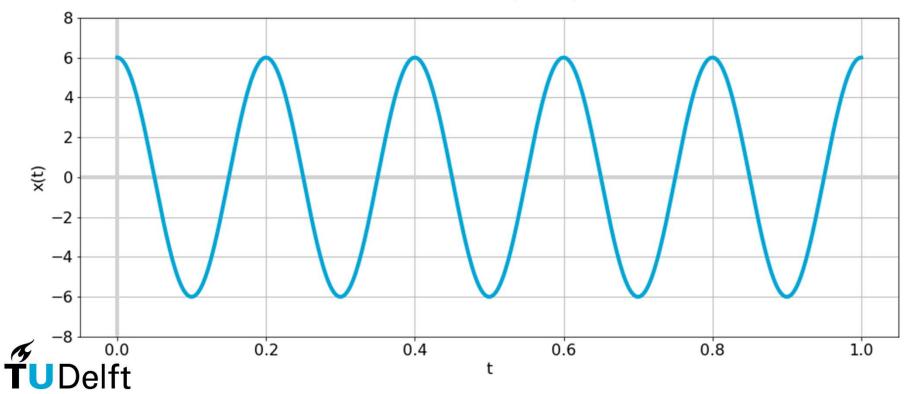
This is called **aliasing**, and is illustrated in the following example.

*) information is lost, and this is irreversible ...:-(

Aliasing example – signal

As example we study the effect of sampling sinusoidal signal with frequency of $f_c = 5$ Hz

$$x(t) = 6\cos(10\pi t)$$

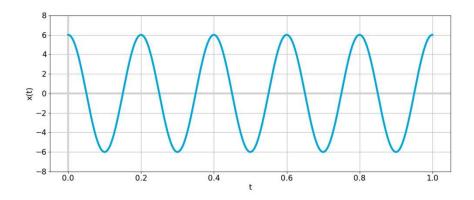


Aliasing example – signal

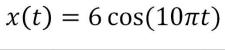
First, we look at *correctly* sampled signal, with $f_s = 14$ Hz ($f_s > 2f_c$)

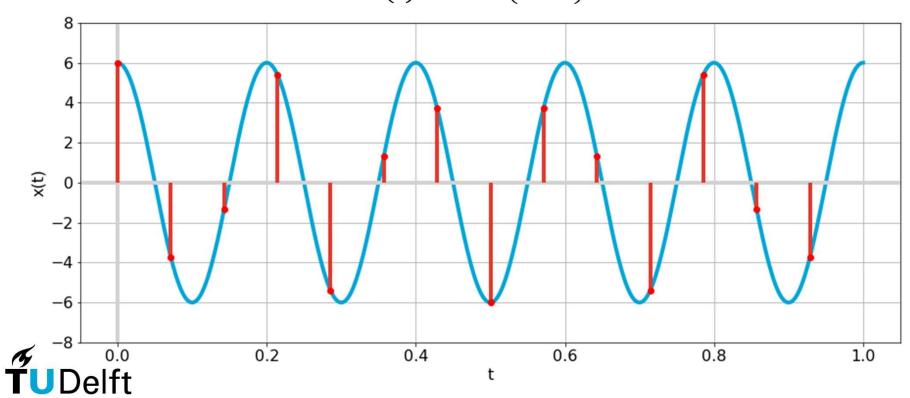
Spectrum (which is real, because x(t) is even) of original continuous-time signal will have two Dirac-functions with weight 3, at f = 5 Hz and f = -5 Hz,

i.e.
$$X(f) = \frac{6}{2} [\delta(f-5) + \delta(f+5)]$$

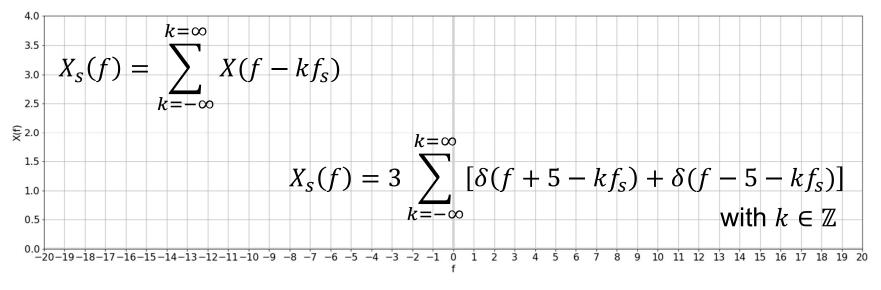


Aliasing example – sampled at 14 Hz

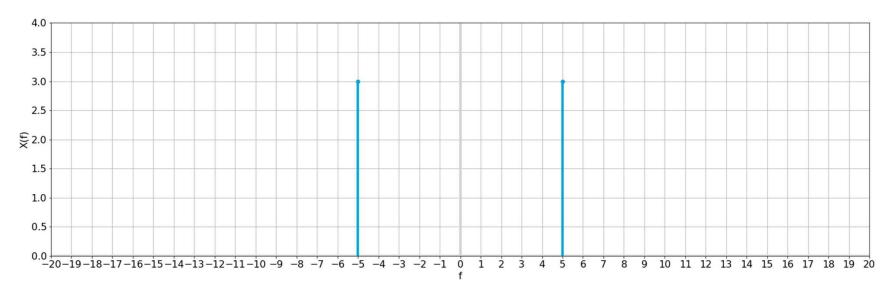




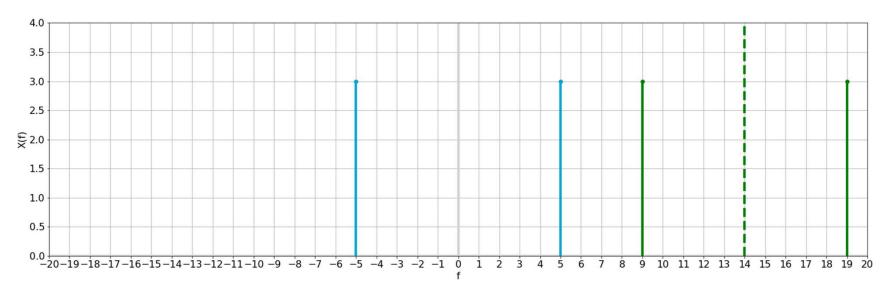
$$x(t) = 6\cos(10\pi t)$$
$$f_s = 14 \text{ Hz}$$



$$x(t) = 6\cos(10\pi t)$$
$$f_s = 14 \text{ Hz}$$



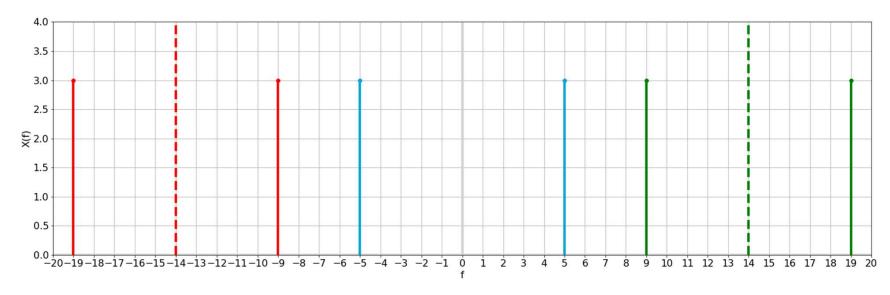
$$x(t) = 6\cos(10\pi t)$$
$$f_s = 14 \text{ Hz}$$



$$k = 0$$

$$k = 1$$

$$x(t) = 6\cos(10\pi t)$$
$$f_s = 14 \text{ Hz}$$

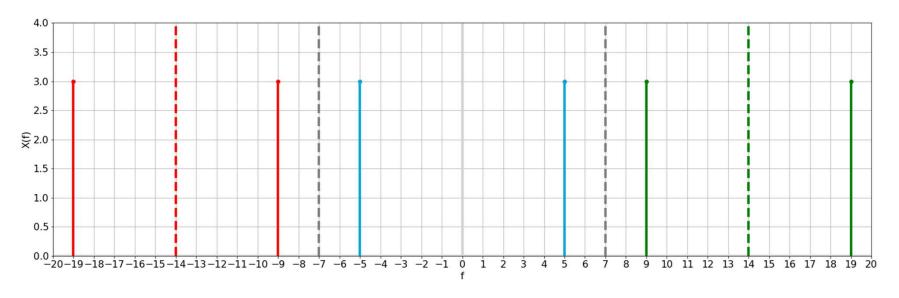


$$k = -1$$

$$k = 0$$

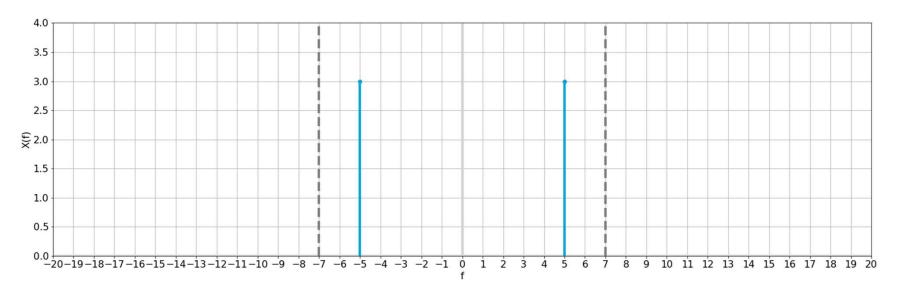
$$k = 1$$

$$x(t) = 6\cos(10\pi t)$$
$$f_s = 14 \text{ Hz}$$



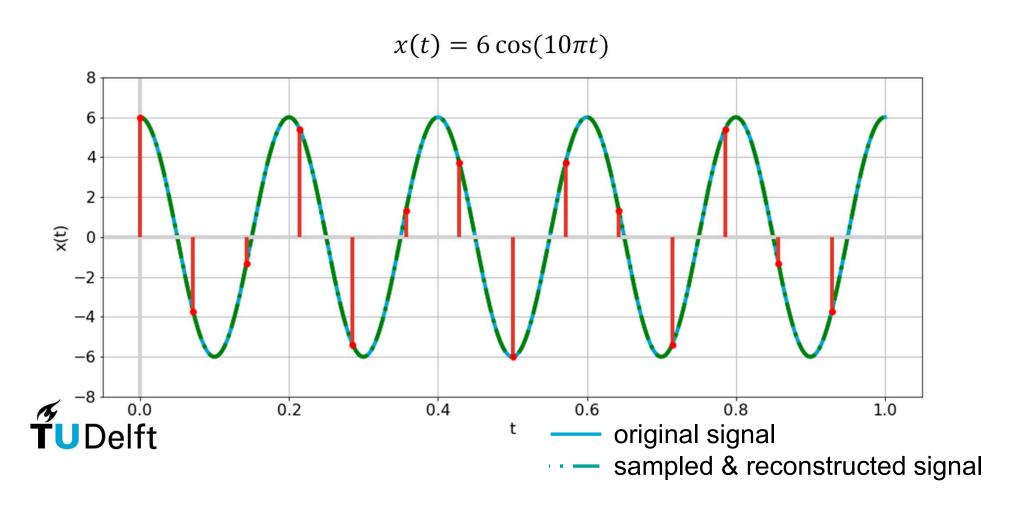
we consider only domain $-\frac{f_s}{2} < f \le \frac{f_s}{2}$

$$x(t) = 6\cos(10\pi t)$$
$$f_s = 14 \text{ Hz}$$



we consider only domain $-\frac{f_s}{2} < f \le \frac{f_s}{2}$

Aliasing example – correct result

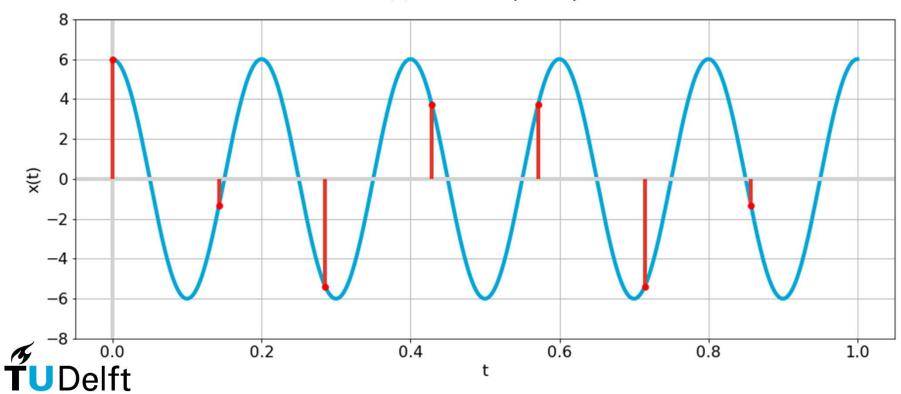


Aliasing example – sampled at 7 Hz

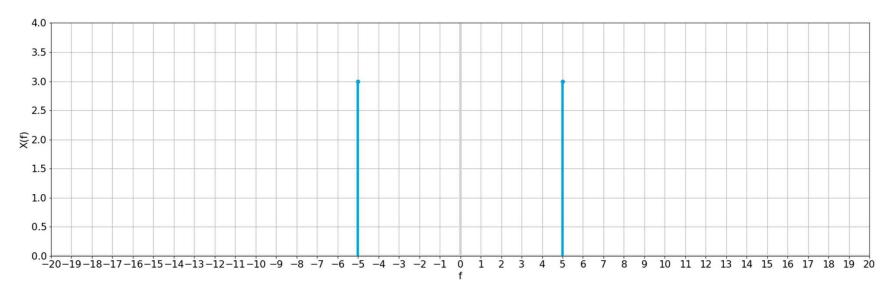
violating sampling theorem:

$$f_S = 7 \text{ Hz} (f_S \gg 2f_C)$$

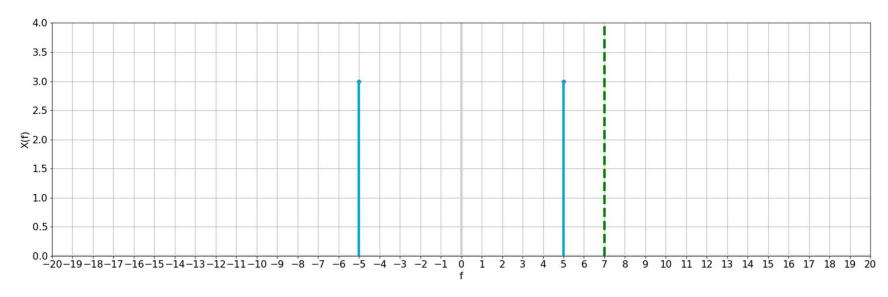
$$x(t) = 6\cos(10\pi t)$$



$$x(t) = 6\cos(10\pi t)$$
$$f_s = 7 \text{ Hz}$$



$$x(t) = 6\cos(10\pi t)$$
$$f_s = 7 \text{ Hz}$$



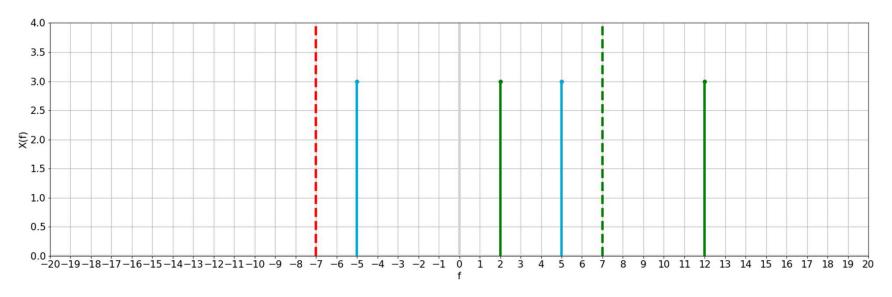
$$k = 0$$
 $k = 1$

$$x(t) = 6\cos(10\pi t)$$
$$f_s = 7 \text{ Hz}$$



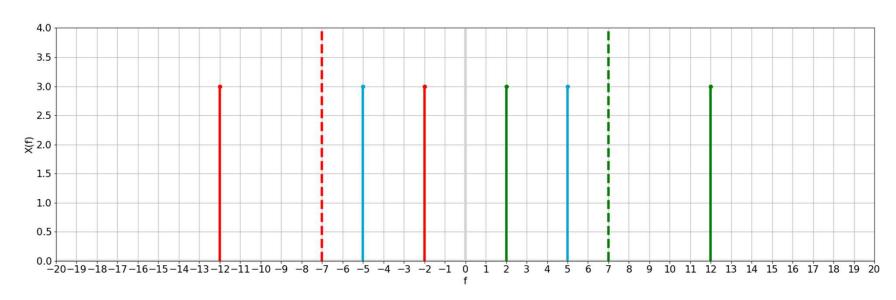
$$k = 0$$
 $k = 1$

$$x(t) = 6\cos(10\pi t)$$
$$f_s = 7 \text{ Hz}$$



$$k = -1 \qquad k = 0 \qquad k = 1$$

$$x(t) = 6\cos(10\pi t)$$
$$f_s = 7 \text{ Hz}$$

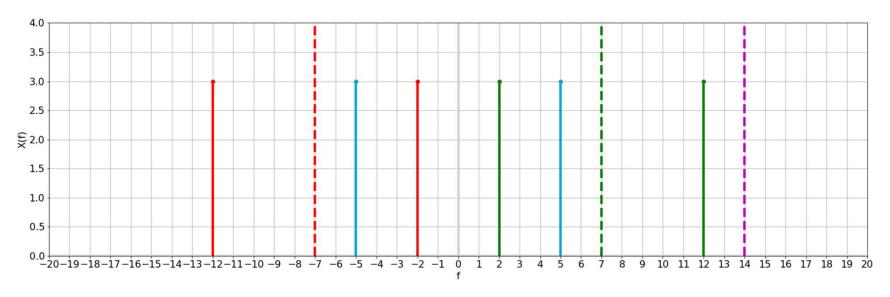


$$k = -1 \qquad k = 0 \qquad k = 1$$

$$k = 0$$

$$k = 1$$

$$x(t) = 6\cos(10\pi t)$$
$$f_s = 7 \text{ Hz}$$



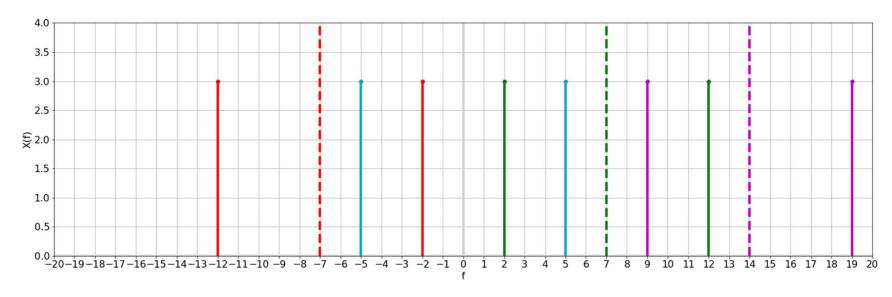
$$k = -1 \qquad \qquad k = 0 \qquad \qquad k = 1 \qquad \qquad k = 2$$

$$k = 0$$

$$k = 1$$

$$k = 2$$

$$x(t) = 6\cos(10\pi t)$$
$$f_s = 7 \text{ Hz}$$



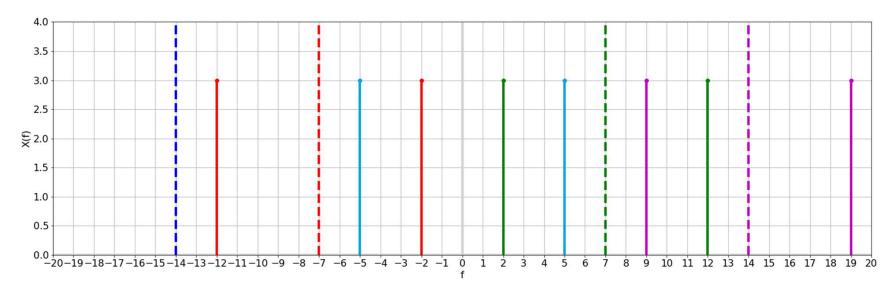
$$k = -1 \qquad \qquad k = 0 \qquad \qquad k = 1 \qquad \qquad k = 2$$

$$k = 0$$

$$k = 1$$

$$k = 2$$

$$x(t) = 6\cos(10\pi t)$$
$$f_s = 7 \text{ Hz}$$



$$k = -2$$

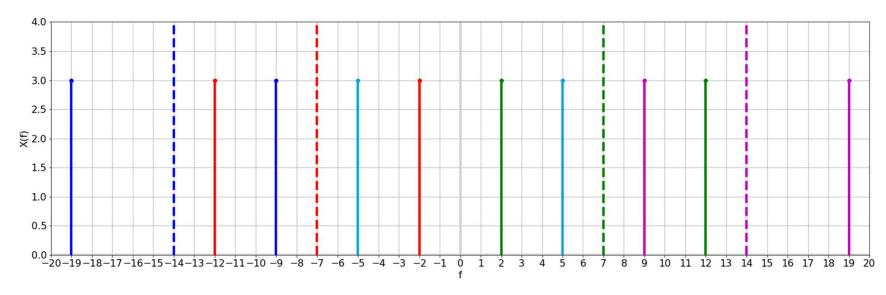
$$k = -2$$
 $k = -1$ $k = 0$ $k = 1$ $k = 2$

$$k = 0$$

$$k = 1$$

$$k = 2$$

$$x(t) = 6\cos(10\pi t)$$
$$f_s = 7 \text{ Hz}$$



$$k = -2$$
 $k = -1$ $k = 0$ $k = 1$ $k = 2$

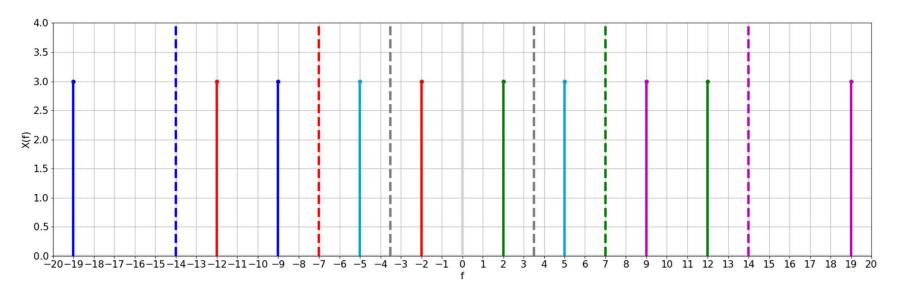
$$k = -1$$

$$k = 0$$

$$k = 1$$

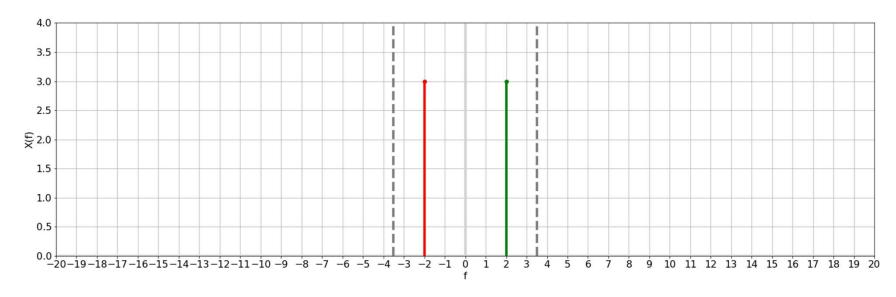
$$k = 2$$

$$x(t) = 6\cos(10\pi t)$$
$$f_s = 7 \text{ Hz}$$



we consider only domain $-\frac{f_s}{2} < f \le \frac{f_s}{2}$

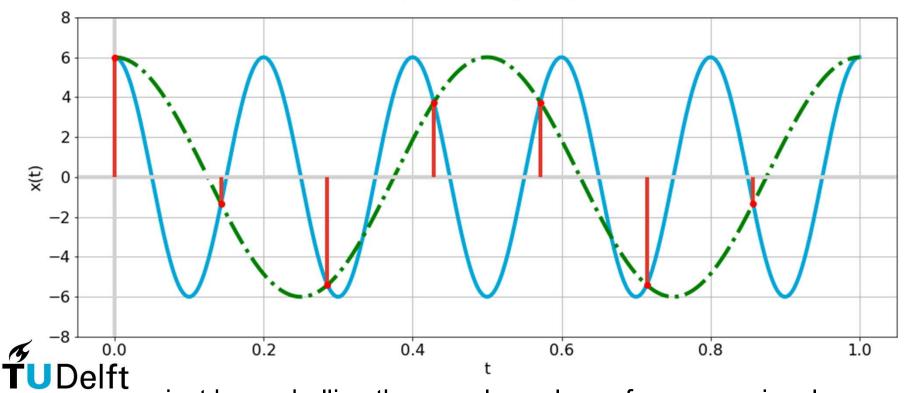
$$x(t) = 6\cos(10\pi t)$$
$$f_s = 7 \text{ Hz}$$



Aliasing example – incorrect result

original signal — sampled & reconstructed signal

$$x(t) = 6\cos(10\pi t)$$



just by eyeballing the samples, a lower frequency signal appears ...

Sampling - summary

The Fourier transform of a sampled signal $x_s(t)$ is given as:

$$X_{S}(f) = \sum_{k=-\infty}^{k=\infty} X(f - kf_{S})$$

where f_s is sampling frequency.

To prevent aliases, this frequency f_s should be larger than $2f_h$, where f_h is highest frequency occurring in signal.

Modelling, Uncertainty and Data for Engineers (MUDE)

Signal Processing: Discrete Fourier Transform
Christian Tiberius

Objectives

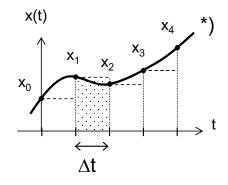
- Discrete Fourier Transform (DFT)
 - \Rightarrow tool to be used in practice to compute Fourier transform of sampled signal $x_s(t)$

Discrete Time Fourier Transform - DTFT

We discretize Fourier transform of $x_s(t)$ by replacing integral by summation over time:

$$X_{s}(f) = \sum_{n=-\infty}^{n=\infty} \Delta t \ x_{n} \ e^{-j2\pi f n \Delta t}$$

with $x_n = x(n\Delta t)$, and where complex exponential is also evaluated at times $t = n\Delta t$, and $n \in \mathbb{Z}$



This is still a <u>continuous function</u> of frequency f ($f \in \mathbb{R}$), periodic with period f_s , exactly as we got with impulse train sampling, and known as Discrete Time Fourier Transform (DTFT).

*) actually function $x(t) e^{-j2\pi f}$ rather than just x(t)

Discrete Fourier Transform - DFT

We want to analyse spectrum $X_s(f)$ of sampled signal $x_s(t)$ using a computer, i.e. by Digital Signal Processing (DSP). Two issues remain, however:

$$X_{s}(f) = \sum_{n=-\infty}^{n=\infty} \Delta t \ x_{n} \ e^{-j2\pi f n \Delta t}$$

- \longrightarrow we cannot measure signal forever, so we cannot have $n \to \infty$.
- once sampled in time domain, still continuous function (of frequency) does not lend itself to DSP algorithm requires discrete data points as input, and delivers discrete data points as output ...

DFT - action item 1

ľU Delft

we cannot measure signal forever

sampled signal $x_s(t)$ is sequence x_n with $n = \{-\infty, ..., \infty\}$, so values $x_n = x(n\Delta t)$ at discrete times $t = n\Delta t$ (with $n \in \mathbb{Z}$)

we consider it only for time duration $T = N\Delta t$, resulting in just N samples; effectively this means applying window $\Pi\left(\frac{t}{T}\right)$; in practice we set signal to zero outside window, hence: $x_{sw}(t) = \Pi\left(\frac{t}{T}\right)x_s(t)$

This means x_n with n = 0, ..., N - 1 has finite length

DFT – action item 2

continuous function does not lend itself to DSP

sample frequency spectrum: we will evaluate it only at discrete frequencies

as we only use piece of $T = N\Delta t$ of signal, *smallest* resulting frequency will be $f_0 = \frac{1}{T} = \frac{1}{N\Delta t} = \frac{f_S}{N}$, known as frequency (or spectral) **resolution**

largest frequency is related to sampling frequency $f_s = \frac{1}{\Delta t}$

hence, spectrum will be computed at frequencies $f = 0, \frac{1}{N} f_S, \frac{2}{N} f_S, \dots, \frac{N-1}{N} f_S$ (so-called analysis-frequencies)

DFT

This results in **Discrete Fourier Transform (DFT)**: tool to be used in practice.

DFT turns N samples of signal x(t) into N samples of spectrum $X_{sw}(f)$:

$$x(n\Delta t) \leftrightarrow X_{SW}(kf_0)$$

with both n and $k \in \{0,1,...,N-1\}$

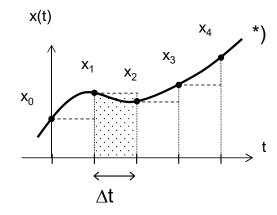
DFT: action-item 1

Sampled, windowed signal $x_{sw}(t)$ equals sequence x_n with n = 0, ..., N - 1.

Then, $X_{sw}(f) = \int_{-\infty}^{\infty} x_{sw}(t)e^{-j2}$ dt, which we discretize into:

$$X_{sw}(f) = \sum_{n=0}^{N-1} \Delta t \ x_n \ e^{-j2\pi f n \Delta t}$$

(similar to DTFT)



*) actually function $x(t) e^{-j2\pi f}$ rather than just x(t)

DFT: action-item 2

Finally, we sample frequency spectrum, turning $X_{sw}(f)$ into $X_{sws}(f)$ by considering only $f = k\Delta f$ with $\Delta f = f_0 = \frac{1}{T} = \frac{1}{N\Delta t} = \frac{f_s}{N}$ and k = 0, 1, ..., N-1:

$$X_{SWS}(k\Delta f) = \Delta t \sum_{n=0}^{N-1} x_n e^{-j2\pi k\Delta f n\Delta t} = \Delta t \sum_{n=0}^{N-1} x_n e^{-j\frac{2\pi}{N}kn} \quad \text{with } k \in \mathbb{Z}$$

Hence sequence X_k equals $X_{sws}(f)$ at $f = k\Delta f$ for k = 0, 1, ..., N - 1.

$$X_k = \Delta t \sum_{n=0}^{N-1} x_n e^{-j\frac{2\pi}{N}kn}$$

DFT - summary

$$X_k = \Delta t \sum_{n=0}^{N-1} x_n e^{-j\frac{2\pi}{N}kn}$$

$$X_k = \Delta t \sum_{n=0}^{N-1} x_n e^{-j\frac{2\pi}{N}kn}$$
 $x_n = \frac{1}{N\Delta t} \sum_{k=0}^{N-1} X_k e^{j\frac{2\pi}{N}kn}$

with both k and $n \in \{0,1,...,N-1\}$

With X_k , we consider function $X(k\Delta f)$ by restoring *frequency dimension*, frequency resolution: $\Delta f = f_0 = \frac{1}{T} = \frac{1}{N\Delta t} = \frac{f_S}{N}$

With x_n , we consider function $x(n\Delta t)$ by restoring *time dimension*, time resolution: $\Delta t = \frac{1}{f_s}$ **ŤU**Delft

DFT - summary

In many textbooks, we find DFT as:

$$X_k = \sum_{n=0}^{N-1} x_n e^{-j\frac{2\pi}{N}kn}$$

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{j\frac{2\pi}{N}kn}$$

with both k and $n \in \{0,1,...,N-1\}$

Hence, without factors Δt and $\frac{1}{\Delta t}$. This is also how DFT is implemented in programming languages like Matlab and Python; user has to restore time and frequency dimension!

Modelling, Uncertainty and Data for Engineers (MUDE)

Signal Processing: Spectral Estimation
Christian Tiberius

Objectives

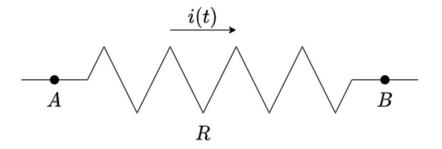
- energy and power signals
- Parseval's theorem
- Power Spectral Density (PSD)
- basic spectral estimation: periodogram

so far looked at amplitude spectrum resulting from Fourier Series and magnitude spectrum from Fourier transform, $|X_k|$ and |X(f)| resp; can we connect amplitudes at different frequencies to physical notions of energy and power?

how is energy/power of signal distributed over frequency → spectral analysis

Energy and power signals

Definitions of energy and power stem from electrical engineering. Suppose u(t) is voltage across resistor R producing current i(t)



Energy and Power signals

Instantaneous power is defined as p(t) = u(t)i(t), and u(t) = i(t)R, so $p(t) = i^2(t)R = \frac{u^2(t)}{R}$ u(t) in [V], i(t) in [A]

with $R = 1 \Omega$, instantaneous power per Ohm is given as:

$$p(t) = u(t)i(t) = i^{2}(t) = u^{2}(t)$$

Integrating over $|t| \leq T$, we define total energy and average power as:

$$E = \lim_{T \to \infty} \int_{-T}^{T} u^2(t) dt$$
 in Joule [J] (on a per Ohm basis)

$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} u^{2}(t) dt \quad \text{in Watt [W]}$$

Energy and power signals

For signal x(t), total energy (normalized to unit resistance) is defined as:

$$E = \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt$$
 in Joule [J = V A s = N m]

and average power (normalized to unit resistance) as:

$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt \qquad \text{in Watt [W = J/s]}$$

For real signals, modulus signs may be removed from equations above.

Parseval's theorem (Fourier transform)

We obtain Parseval's theorem for Fourier transforms:

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df$$

Energy Spectral Density (ESD)

Parseval's theorem (DFT)

Note that X_k denotes DFT-coefficients, with Δt included $X_k = \Delta t \sum_{n=0}^{N-1} x_n e^{-j\frac{2\pi}{N}kn}$

Power of signal, contained in frequency band of width $\Delta f = \frac{1}{T}$, at frequency $f = k \Delta f$ is:

$$S(k\Delta f) = \frac{1}{T}|X_k|^2$$
 in [W/Hz] for $k = 0, ... N - 1$

and actually is power density

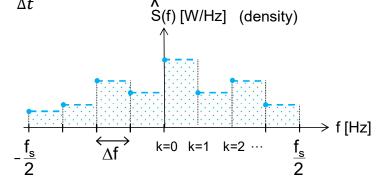
Parseval's theorem (DFT) → periodogram

$$S(k\Delta f) = \frac{1}{T}|X_k|^2$$
 in [W/Hz] for $k = 0, ... N - 1$ and $\Delta f = \frac{1}{T}$

This turns out to be an *estimate for* the PSD, and is referred to as periodogram (estimate may be indicated by hat-symbol, hence \hat{S}).

Product $\Delta f S(k\Delta f)$ is contribution by frequency band with width Δf at frequency $f = k\Delta f$, to power P of signal.

Periodogram S(f) defined for $0 \le f < f_S$, or equivalently $-\frac{f_S}{2} < f \le \frac{f_S}{2}$ (two-sided), with $f_S = \frac{1}{\Lambda f}$



Note that X_k denotes DFT-coefficients, with Δt included: $\sum_{k=0}^{N-1} e^{-j\frac{2\pi}{N}kn}$

$$X_k = \Delta t \sum_{n=0}^{N-1} x_n e^{-j\frac{2\pi}{N}kn}$$