Modelling, Uncertainty and Data for Engineers (MUDE)

Signal Processing: continuous time Fourier series & Fourier transform

Christian Tiberius

Modelling, Uncertainty and Data for Engineers (MUDE)

Signal Processing: real Fourier Series

Christian Tiberius

Objectives

goal is to express periodic signal x(t) as a sum of harmonically related cosines and sines:

$$x(t) = a_0 + \sum_{k=1}^{k=\infty} a_k \cos(k\omega_0 t) + \sum_{k=1}^{k=\infty} b_k \sin(k\omega_0 t)$$

- periodic functions (re-cap)
- Fourier Series (real, trigonometric)

Example:
$$x(t) = A \cos(2\pi f_0 t + \theta)$$

- amplitude A [e.g. V, m, m/s²]
- frequency f_0 [Hz] angular frequency $\omega_0=2\pi f_0$ [rad/s] period $T_0=\frac{1}{f_0}=\frac{2\pi}{\omega_0}$ [s]
- phase θ [rad]

Example: $x(t) = A \cos(2\pi f_0 t + \theta)$

- amplitude A [e.g. V, m, m/s²]
- frequency f_0 [Hz] angular frequency $\omega_0=2\pi f_0$ [rad/s] period $T_0=\frac{1}{f_0}=\frac{2\pi}{\omega_0}$ [s]
- phase θ [rad]
- time-delay $\theta_t = \frac{\theta}{2\pi f_0}$ [s]

as
$$x(t) = A \cos(2\pi f_0(t + \theta_t))$$
TUDelft

A deterministic function/signal is **periodic** if:

$$x(t + T_0) = x(t)$$
 for $-\infty < t < \infty$

where T_0 is **period** of signal.

Smallest value of T_0 which satisfies equation above is **fundamental period.**

If equation is not satisfied for any value of T_0 , signal is **aperiodic.**

We consider signals in single dimension, typically time t (independent variable), hence x(t).

Instead we can have x(r), with r (1D) position coordinate, or even multi-variate position vector \boldsymbol{r} .

default: time *t* [s], frequency *f* [Hz]

and today $t \in \mathbb{R}$ (continuous time)

Trigonometric series

Apparently there exists possibility of building up <u>arbitrary periodic signal</u> from sums of harmonically related sinusoidal terms. So:

Given specific periodic signal, how do we find its trigonometric series representation?

It will be shown that resulting series, *unique* for each periodic signal, is called **trigonometric Fourier series** of that signal, sometimes also real Fourier series, or trigonometric polynomial, i.e. sum of cosines and sines, all with zero phase.

Fourier Series

The general form of real trigonometric Fourier Series:

$$x(t) = a_0 + a_1 \cos(\omega_0 t) + a_2 \cos(2\omega_0 t) + \dots + b_1 \sin(\omega_0 t) + b_2 \sin(2\omega_0 t) + \dots$$

More compact:

$$x(t) = a_0 + \sum_{k=1}^{k=\infty} a_k \cos(k\omega_0 t) + \sum_{k=1}^{k=\infty} b_k \sin(k\omega_0 t)$$
 with $\omega_0 = \frac{2\pi}{T_0}$

with integer values for k. Note that as right-hand side is sum of harmonically-related sinusoids, so must left-hand side (i.e. be periodic).

Now, problem is how to find coefficients a_0 , a_k and b_k such that x(t) is represented (or approximated) best.

Fourier Series – summary

Any periodic signal*) can be written into series of harmonically related sinusoids:

$$x(t) = a_0 + \sum_{k=1}^{k=\infty} a_k \cos(k\omega_0 t) + \sum_{k=1}^{k=\infty} b_k \sin(k\omega_0 t)$$
 with $\omega_0 = \frac{2\pi}{T_0}$

where coefficients can be found as:

$$a_0 = \frac{1}{T_0} \int_{T_0} x(t) dt$$

$$a_k = \frac{2}{T_0} \int_{T_0} x(t) \cos(k\omega_0 t) dt$$

$$b_k = \frac{2}{T_0} \int_{T_0} x(t) \sin(k\omega_0 t) dt$$

$$b_k = \frac{2}{T_0} \int_{T_0} x(t) \sin(k\omega_0 t) dt$$

with $k \in \mathbb{N}^+$

 $^{*)}$ signal x(t) is assumed to be absolutely integrable over one period, hence $\int_{T_0} |x(t)| dt < \infty$ (and there is another condition)

Fourier Series – conclusion

Can we express basically any <u>periodic</u> function/signal as a sum of just <u>cosines</u> and <u>sines</u> with different frequencies?

Yes, we can:

$$x(t) = a_0 + \sum_{k=1}^{k=\infty} a_k \cos(k\omega_0 t) + \sum_{k=1}^{k=\infty} b_k \sin(k\omega_0 t)$$
 with $\omega_0 = \frac{2\pi}{T_0}$

with coefficients a_0 , a_k and b_k as on previous slide.

Cosine and sine can be thought of as originating from an object travelling over a (unit) circle; the object is rotating at angular frequency ω_0

The circle is interpreted as being in the complex plane

$$\tilde{x}(t) = e^{j\omega_0 t} = \cos(\omega_0 t) + j\sin(\omega_0 t)$$

position of object is described by complex number (vector) $\tilde{x}(t)$

• =
$$Re(\tilde{x}(t)) = \cos(\omega_0 t)$$

 $Im(\tilde{x}(t)) = \sin(\omega_0 t)$

lm

for
$$A = 1$$
 and $\theta = 0$

Modelling, Uncertainty and Data for Engineers (MUDE)

Signal Processing: complex Fourier Series

Christian Tiberius

Re-cap: trigonometric real Fourier Series

Now, <u>same</u> signal <u>decomposition</u>, but in different form, using <u>complex algebra</u>, as commonly done in spectral analysis of signals

We're on our way to analyse signal in terms of *frequency*, rather than in *time* domain

Re-cap: complex algebra

j: imaginary unit (or number), $j^2 = -1$

e: Euler's number (base of natural logarithm) e = 2.71...

Euler's formula:

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

 $e^{-j\theta} = \cos(\theta) - j\sin(\theta)$

and therewith:

$$e^{j\theta} + e^{-j\theta} = 2\cos(\theta) \rightarrow \cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta})$$

 $e^{j\theta} - e^{-j\theta} = 2j\sin(\theta) \rightarrow \sin(\theta) = \frac{1}{2i}(e^{j\theta} - e^{-j\theta})$

Complex Fourier Series (derivation)

substitute complex exponential forms of $\cos(k\omega_0 t)$ and $\sin(k\omega_0 t)$ into trigonometric series:

$$x(t) = a_0 + \sum_{k=1}^{k=\infty} a_k \frac{1}{2} \left(e^{jk\omega_0 t} + e^{-jk\omega_0 t} \right) + \sum_{k=1}^{k=\infty} b_k \frac{1}{2j} \left(e^{jk\omega_0 t} - e^{-jk\omega_0 t} \right)$$

$$x(t) = a_0 + \sum_{k=1}^{k=\infty} \frac{1}{2} (a_k - jb_k) e^{jk\omega_0 t} + \sum_{k=1}^{k=\infty} \frac{1}{2} (a_k + jb_k) e^{-jk\omega_0 t}$$

$$X_k = X_{-k}$$

Complex Fourier Series (derivation)

$$x(t) = a_0 + \sum_{k=1}^{k=\infty} X_k e^{jk\omega_0 t} + \sum_{k=1}^{k=\infty} X_{-k} e^{-jk\omega_0 t} \quad \text{in this summation replace k by $-k$}$$

$$x(t) = a_0 + \sum_{k=1}^{k=\infty} X_k e^{jk\omega_0 t} + \sum_{k=-1}^{k=-\infty} X_k e^{jk\omega_0 t}$$

$$x(t) = a_0 \text{ and } e^{j0\omega_0 t} = 1$$

$$x(t) = \sum_{k=0}^{k=\infty} X_k e^{jk\omega_0 t}$$

$$x(t) = \sum_{k=-\infty}^{k=\infty} X_k e^{jk\omega_0 t}$$

the complex exponential Fourier series (double sided)

Complex Fourier Series

$$x(t) = \sum_{k=-\infty}^{k=\infty} X_k e^{jk\omega_0 t}$$

First equation is known as **synthesis** equation of Fourier Series, as it constructs ('synthesizes') signal using complex exponential basis functions.

$$X_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt \qquad k \in \mathbb{Z}$$

Second equation is known as **analysis** equation of Fourier Series, as it allows us to analyse how signal can be represented by complex exponential basis functions (where index k refers to frequency $k\omega_0$).

Line spectra

complex exponential Fourier Series coefficients

$$X_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt \qquad k \in \mathbb{Z}$$

show amplitudes of all phasors involved, through modulus of complex exponential coefficients $|X_k|$ versus frequency kf_0 , yields **amplitude spectrum** show phases of all phasors, through argument of complex exponential coefficients θ_k versus frequency kf_0 , yields **phase spectrum**

Note: $\omega_0 = 2\pi f_0$

Line spectra - example

Consider following signal, with period $T_0 = 2$ s, so $f_0 = 0.5$ Hz, composed of three cosines and one sine:

 $x(t) = 1\cos(2\pi f_0 t) + 2\cos(2\pi 2 f_0 t) + 1\cos(2\pi 3 f_0 t) + 1\sin(2\pi f_0 t)$ real and complex Fourier coefficients are shown below:

Modelling, Uncertainty and Data for Engineers (MUDE)

Signal Processing: Fourier transform
Christian Tiberius

Objectives

Can a-periodic signals $(T_0 \rightarrow \infty)$ also be written as 'sum' of cosine and sine functions?

Re-cap: complex Fourier Series (for periodic signal)

complex exponential Fourier Series:

$$x(t) = \sum_{k=-\infty}^{k=\infty} X_k e^{jk2\pi f_0 t}$$

with $\omega_0 = 2\pi f_0$ and $k \in \mathbb{Z}$

complex coefficients can be found as:

$$X_{k} = \frac{1}{T_{0}} \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} x(t)e^{-jk2\pi} e^{-t} dt$$

the integration over $\underline{\text{one period}},\ \int_{T_0}$, is conveniently chosen here symmetric about zero

Fourier transform - introduction

When period T_0 increases, frequencies belonging to Fourier Series coefficients (kf_0) lie closer and closer together, because $f_0 = \frac{1}{T_0}$ decreases.

Now, what if T_0 approaches infinity? That is, what would happen if we have an a-periodic signal?

Fourier coefficients will lie infinitesimally close to each other, so they define continuous function of frequency $f \approx k f_0$

Fourier transform - derivation

Now, integral within parentheses is defined as **Fourier integral** or (continuous-time) **Fourier transform** $\mathcal{F}()$:

$$X(f) = \int_{t=-\infty}^{t=\infty} x(t)e^{-j2\pi f} dt$$

Complex number X_k with Fourier Series now got complex function of frequency f: X(f)

Fourier transform - derivation

Inverse Fourier transform $\mathcal{F}^{-1}()$ can also be derived:

$$x(t) = \int_{f=-\infty}^{f=\infty} X(f) e^{j2\pi f t} df$$

Note: to obtain x(t) from X(f), we integrate over *frequency* f, the result is function of *time* t.

Hence, Fourier transform and its inverse can be used to transform time signal to frequency domain, and other way around. This yields a Fourier transform pair:

$$x(t) \xrightarrow{\mathcal{F}} X(f) \xrightarrow{\mathcal{F}^{-1}} x(t)$$
 or $x(t) \leftrightarrow X(f)$

Fourier transform – amplitude and phase

Like coefficients of complex Fourier Series, Fourier transform can be written in terms of magnitude and phase:

$$X(f) = |X(f)|e^{j\theta(f)}$$

with:

$$|X(f)| = \sqrt{\left(Re(X(f))\right)^2 + \left(Im(X(f))\right)^2}$$

$$\theta(f) = \arctan\left(\frac{Im(X(f))}{Re(X(f))}\right)$$

Fourier transform – amplitude and phase

When x(t) is real, then:

$$|X(f)| = |X(-f)|$$
 and $\theta(f) = -\theta(-f)$

Magnitude |X(f)| is even function of $f \to \text{amplitude spectrum}^*$

Phase $\theta(f)$ is *odd* function of $f \to \text{phase spectrum}$

*) the term <u>amplitude spectrum</u> is commonly used in practice; formally it should read <u>magnitude spectrum</u>