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Finite elements and CEG

Three commercial codes with strong ties to this faculty

And several research codes



The Finite Methods

Finite difference method: discretize the derivatives

∂2u

∂x2
≈

ui−1 − 2ui + ui+1

∆x2

Finite volume method: discretize the conservation

∂u

∂t
= ν∇

2
u

∂

∂t

∫

Ω

u dΩ = ν

∫

Γ

∇u · n dΓ

Finite element method: discretize the solution

u(x) ≈
∑

i

Ni(x)ui



The Finite Methods

Finite difference method: discretize the derivatives

∂2u

∂x2
≈

ui−1 − 2ui + ui+1

∆x2

Finite volume method: discretize the conservation

∂u

∂t
= ν∇

2
u

∂

∂t

∫

Ω

u dΩ = ν

∫

Γ

∇u · n dΓ

Finite element method: discretize the solution

u(x) ≈
∑

i

Ni(x)ui ?



Discretizing the solution

The Poisson equation in 1D
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Discretizing the solution

The Poisson equation in 1D

−ν
∂2u

∂x2
= f

Approximate u as uh , with

u
h(x) =

∑

i

Ni(x)ui = Nu

How to find the best values ui?

u

x

1

1

1

1

1

u1
u2

u3

u4
u5

N1

N2

N3

N4

N5



From strong form to weak form equation

Weighted residual formulation:

−ν
∂2u

∂x2
= f ⇔ −

∫

Ω

wν
∂2u

∂x2
dx =

∫

Ω

wf dx ∀ w

Integration by parts:

∫

Ω

wν
∂2u

∂x2
dx = −

∫

Ω

∂w

∂x
ν
∂u

∂x
dx+

[

wν
∂u

∂x

]L

0

Substitution of boundary conditions:
∫

Ω

∂w

∂x
ν
∂u

∂x
dx =

∫

Ω

wf dx+ w(L)h(L)− w(0)h(0) ∀ w



From weak form to discretized form

Weak form equation
∫

Ω

∂w

∂x
ν
∂u

∂x
dx =

∫

Ω

wf dx+ [wh]L
0
∀ w

Introduce discretization:

u← u
h = Nu, w ← w

h = Nw (Bubnov-Galerkin)

∂u

∂x
←

∂uh

∂x
= Bu,

∂w

∂x
←

∂wh

∂x
= Bw

Substitution gives:
∫

Ω

BwνBu dx =

∫

Ω

Nwf dx+ [wh]L
0
∀ w ⇒

∫

Ω

B
T
νB dxu =

∫

Ω

N
T
f dx+

[

N
T
h
]L

0



The resulting system of equations

Ku = f with K =

∫

Ω

B
T
νB dx and f =

∫

Ω

N
T
f dx+

[

N
T
h
]L

0

expanded as: K =

∫

Ω











B1

B2

...
Bn











ν
[

B1 B2 · · · Bn

]

dx



The resulting system of equations

Ku = f with K =

∫

Ω

B
T
νB dx and f =

∫

Ω

N
T
f dx+

[

N
T
h
]L

0

expanded as: K =

∫

Ω











B1

B2

...
Bn











ν
[

B1 B2 · · · Bn

]

dx

with: Ni =



















0, x ≤ xi−1
x−xi−1

xi−xi−1
, xi−1 ≤ x < xi

xi+1−x

xi+1−xi
, xi ≤ x < xi+1

0, x > xi+1

and: Bi =
∂Ni

∂x
=















0, x ≤ xi−1
1

xi−xi−1
, xi−1 ≤ x < xi

−1

xi+1−xi
, xi ≤ x < xi+1

0, x > xi+1

After integration:

ν

∆x







































1 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2
. . . 0 0 0

. . .
. . .

. . .

0 0 0
. . . 2 −1 0

0 0 0 −1 2 −1

0 0 0 0 −1 1













































































u1

u2

u3

...

un−2

un−1

un







































=







































1

2
q∆x− h(0)

q∆x

q∆x
...

q∆x

q∆x

1

2
q∆x+ h(L)







































(with uniform mesh xi+1 − xi = ∆x

and constant source f(x) = q)
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Higher order elements can also be formulated, 3-nodes per element for quadratic

The discretized Poisson equation: Ka = f with K =

∫

Ω

B
T
νB dx and f =

∫

Ω

N
T
f dx+

[

N
T
h
]L

0



Shape function properties

Shape functions requirements for good performance:

• Partition of unity:
∑

i
Ni(x) = 1

⇒ represent constant solutions exactly

• Kronecker delta property: Ni(xj) =

{

1, i = j

0, i 6= j

⇒ interpret degrees of freedom as nodal values

⇒ apply boundary conditions directly



Discretizing a 2D solution with triangulation of the domain
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Discretizing a 2D solution with triangulation of the domain

u(x, y) ≈
∑

i

Ni(x, y)ui

The nodal shape function spans multiple elements

Every element has 3 shape functions:

Ni = ai + bix+ ciy
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2D shape functions on a quadrilateral elements

x

x

y

y

N

Ni = ai + bix+ ciy + dix
2 + eixy + fiy

2 + gix
2y + hixy

2

Quad-8 element



3D elements

x

y

z

Hexahedral element

Ni = ai + bix+ ciy + diz + eixy + fixz + giyz + hixyz



3D elements

x

y

z

Hexahedral element Tetrahedral element

Ni = ai + bix+ ciy + diz + eixy + fixz + giyz + hixyz Ni = ai + bix+ ciy + diz



Problem definition in 2D

The Poisson equation:

−ν

(

∂2u

∂x2
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∂2u

∂y2

)
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Ω

x

y

ū

h



Problem definition in 2D

The Poisson equation:

−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f on Ω

Ω

x

y

ū
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Problem definition in 2D

The Poisson equation:

−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f on Ω

Ω

x

y

ū

h

With boundary conditions

u = ū(x, y) on ΓD

ν∇u · n = h(x, y) on ΓN

Aim: discretize into a system of equations

Ku = f

Where u contains approximate values for u(x, y) at the nodes of a finite element mesh



Discretizing the solution in 2D

The Poisson equation:

−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f

Approximate u as uh with 2D shape functions

u
h(x, y) =

∑

i

Ni(x, y)ui = Nu

– u contains nodal values

– N defines the interpolation

→ Find u such that uh ≈ u



Weak form equation in 2D

Weighted residual formulation:

−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f − ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f



Weak form equation in 2D

Weighted residual formulation:

−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f − wν

(

∂2u
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∂y2

)

= wf
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Weak form equation in 2D

Weighted residual formulation:
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+
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∂y2
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= f ⇔ −

∫

Ω

wν

(

∂2u
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∂y2
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Ω
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Ω
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∫

Γ

wν∇u · n dΓ ∀ w



Weak form equation in 2D

Weighted residual formulation:

−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f ⇔ −

∫

Ω

wν

(

∂2u

∂x2
+

∂2u

∂y2

)

dΩ =

∫

Ω

wf dΩ ∀ w

Integration by parts (with divergence theorem):

∫

Ω

wν

(

∂2u

∂x2
+

∂2u

∂y2

)

dΩ = −

∫

Ω

ν∇w · ∇u dΩ +

∫

Γ

wν∇u · n dΓ ∀ w

Substitution:
∫

Ω

ν∇w · ∇u dΩ−

∫

Γ

wν∇u · n dΓ =

∫

Ω

wf dΩ ∀ w



Weak form equation in 2D

Weighted residual formulation:

−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f ⇔ −

∫

Ω

wν

(

∂2u

∂x2
+

∂2u

∂y2

)

dΩ =

∫

Ω

wf dΩ ∀ w

Integration by parts (with divergence theorem):

∫

Ω

wν

(

∂2u

∂x2
+

∂2u

∂y2

)

dΩ = −

∫

Ω

ν∇w · ∇u dΩ +

∫

Γ

wν∇u · n dΓ ∀ w

Substitution:
∫

Ω

ν∇w · ∇u dΩ−

∫

Γ

wν∇u · n dΓ =

∫

Ω

wf dΩ ∀ w

With boundary conditions (w = 0 on ΓD and ν∇u · n = h on ΓN ):
∫

Ω

ν∇w · ∇u dΩ =

∫

Ω

wf dΩ +

∫

ΓN

wh ∀ w



Discretized form

Weak form equation
∫

Ω

ν∇w · ∇u dΩ =

∫

Ω

wf dΩ +

∫

ΓN

whdΓ ∀ w

Introduce discretization:

u← u
h = Nu, w ← w

h = Nw, N =
[

N1 N2 · · · Nn

]

∇u← ∇u
h = Bu, ∇w ← ∇w

h = Bw, B = ∇N =











∂N1

∂x

∂N2

∂x
· · ·

∂Nn

∂x

∂N1

∂y

∂N2

∂y
· · ·

∂Nn

∂y













Discretized form

Weak form equation
∫

Ω

ν∇w · ∇u dΩ =

∫

Ω

wf dΩ +

∫

ΓN

whdΓ ∀ w

Introduce discretization:

u← u
h = Nu, w ← w

h = Nw, N =
[

N1 N2 · · · Nn

]

∇u← ∇u
h = Bu, ∇w ← ∇w

h = Bw, B = ∇N =











∂N1

∂x

∂N2

∂x
· · ·

∂Nn

∂x

∂N1

∂y

∂N2

∂y
· · ·

∂Nn

∂y











Substitution gives:
∫

Ω

BwνBu dΩ =

∫

Ω

Nwf dΩ +

∫

ΓN

NwhdΓ ∀ w ⇒

∫

Ω

B
T
νB dΩu =

∫

Ω

N
T
f dΩ +

∫

ΓN

N
T
h dΓ



Finding the approximate solution

Discretized form:

Ku = f with K =

∫

Ω

B
T
νB dΩ and f =

∫

Ω

N
T
f dΩ +

∫

ΓN

N
T
h dΓ

Solving the FE equations finally requires:

• Numerical integration of K and f

• Constraining ui = ū for nodes on ΓD

• Solving the constrained system of equations for u

Ω

x

y

ū

h



Take home message

Strong form PDE

Weak form

Discretized form

Solution

Weighted residual

Integration by parts

Neumann BCs

Nodes and elements

Shape functions

Bubnov-Galerkin

Numerical integration

Dirichlet BCs

Solver

FEM discretization: u(x) ≈
∑

i
Ni(x)ui



One more Finite Method

You have seen Finite Difference Method in Q1

• Easiest to implement and understand

• Super efficient for some problems

• Simple geometries and structured grids

Then the Finite Volume Method (week 2.1)

• Mostly for problems involving flow

• Local conservation is guaranteed

Now the Finite Element Method (week 2.2)

• Originally but not exclusively for solid mechanics

• Straighforward handling of boundary conditions

• Native support for unstructured meshes

• Higher order accuracy with higher order shape functions

• Many other cool possibilities from the choice of shape function



Program for this week

Before Wednesday: Self study

• Book: Poisson equation in 1D + python implementation

• Videos: include additional material

Wednesday: Supported bar problem

• Derive weak form

• Extend python implementation

Friday: Diffusion equation

• Transient problem with FEM

• 2D on non-trivial geometry

Enjoy the week!
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