The finite element method
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Finite elements and CEG
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Finite elements and CEG

Three commercial codes with strong ties to this faculty

sentiey [(EXIH

Botiom after 256 year, Flowd0E25 mat

-

0
5
36 i 3 :
; i 10
SVASEK g :
a5k HYDRAULICS : : e
; !
EFS
| 1 | 1 1 | | I
0 1 2 3 A 5 3 7

=10

]
TUDelft



Finite elements and CEG
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Finite elements and CEG

Three commercial codes with strong ties to this faculty

Bentley [T¥¥IH

Botiom after 564 year, Flowd1376 mat

“. %

0
-5
36 : ; :
: : -10
SVASEK _
M SN i Y DRAULICS |
o
34
I I I i I I i
a 1 2 3 4 5 L 7

=10

]
TUDelft



Finite elements and CEG

Three commercial codes with strong ties to this faculty

sentiey [(EXIH

564 year, Flaw1376 mat

SVASEK =
e HYDRAULICS e e e s e e Ly
And several research codes | | | | _ k

w10t

]
TUDelft



The Finite __________ Methods

Finite difference method: discretize the derivatives

2
O°u _ ui—1 — 2u; + Uit

ox> Ax?

Finite volume method: discretize the conservation

%ZVVQU sy %/QudQ:V/FVu-ndF

Finite element method: discretize the solution
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Discretizing the solution

The Poisson equation in 1D

0*u
“Voaz ~ !
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Discretizing the solution
The Poisson equation in 1D
0*u
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Approximate v« as u”
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Discretizing the solution

The Poisson equation in 1D

0*u
Va2 7

Approximate v as u” , with

uh(g;) = E:Nz(as)uZ = Nu 1N\
| I No |

) N3
) Ny
N5 _~

]
TUDelft



Discretizing the solution

The Poisson equation in 1D

0*u
Va2 7

Approximate v as u” , with

uh(g;) = E:Nz(as)uZ = Nu 1N\
| I No |

) N3
) Ny
Ny _~

]
TUDelft



Discretizing the solution
The Poisson equation in 1D
0*u

Va2 7

Approximate v as u” , with

u(z) = Z Ni(x)u; = Nu

How to find the best values u;?
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From strong form to weak form equation

Weighted residual formulation:

0*u 0*u
—I/@—f & —/waﬁdaz—/gwfda: vV w
Integration by parts:
/wV@dx—— a—wu@dx—i— wy% ’
O (9:172 N 9) 8x ax (9:13 0
Substitution of boundary conditions:
8_'wy@ der = / wfdr +w(L)h(L) —w(0)h(0) V w
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From weak form to discretized form

Weak form equation

ow ou , L
Qay%dx—/gwfdx—l—[wh]o Vo ow

Introduce discretization:

u + u" = Nu, w+ w" = Nw (Bubnov-Galerkin)
ou ou” ow ow"
oz ow T Bm 9 e BV

Substitution gives:
L

/BwuBudx:/wada;+[wh]g vV ow = /BTVBd:Uu:/Ndex+ [NTh}
Q Q Q Q

0
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The resulting system of equations

. T T T L
Ku=f with K:/B vBdz and f:/N fda:+[N h]
Q Q

0

expanded as: K:/ v|Bi By -+ By|dz
Q
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The resulting system of equations

. T T T L
Ku=f with K:/B vBdz and f:/N fdx+[N h]
Q Q

expanded as: K :/
Q

with: N; = { i %i-1

and: B, =

]
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"B,
By

By,

Tit1—T;

\07

1% [Bl B2

x < Ti—1
Tic1 < < T
Ti < x < Tit1

T > Tit1

x < X1

7=z, Ti-l <z <z

, T; <x< Tit+1
r > Tit1

Bn] dx

0

After integration:

1 -1 0 0 0 0 U1
—1 2 —1 0 0 0 U2
o -1 2 0 0 0 U3
v ) )
Ax
0 0 0 2 -1 0 Up—2
0 0 0 -1 2 —=1| (un-1
| 0 0 0 0 -1 1] | un

(with uniformmesh z; 11 — z; = Ax
and constant source f(z) = q)

TqAz — h(0)
qAx
qAx




Now, what about these ‘Elements’?

L

The discretized Poisson equation: Ka=f with K = / B'vBdz and f= / NT fdz + [NTh}
Q Q

0
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Now, what about these ‘Elements’?

L

The discretized Poisson equation: Ka=f with K = / B'vBdz and f= / N fdx + [NTh}
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Higher order elements can also be formulated, 3-nodes per element for quadratic

L
The discretized Poisson equation: Ka=f with K = / B'vBdz and f= / N fdx + [NTh}
Q Q 0

>~ X XX <

/\ HHE
///A\\\ ng;;ig :::-

AN >
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Shape function properties

Shape functions requirements for good performance:

e Partition of unity: > . N;(z) =1
= represent constant solutions exactly

1, i=j
0, i#]
= interpret degrees of freedom as nodal values

e Kronecker delta property: N;(z;) = {

= apply boundary conditions directly
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spans multiple elements

The nodal shape function

Jwi

g a 2D solution with triangulation of the domain
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The nodal shape function
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Y)u;

g a 2D solution with triangulation of the domain
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The nodal shape function
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2D shape functions on a quadrilateral elements

(S
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2D shape functions on a quadrilateral elements
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2D shape functions on a quadrilateral elements
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2D shape functions on a quadrilateral elements

Quad-4 element

=

(S

T N; =a; + b;x + c;y + d;xy

]
TUDelft



2D shape functions on a quadrilateral elements

Quad-9 element

/T

N
N

(S

T N; =a; +bix + ciy + d;x? + e; Yy + fq;y2 + gixzy + hq;:vy2 + ji$2y2
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2D shape functions on a quadrilateral elements

Quad-8 element

/T

N
N

(S

x Ni = ai + biz + ciy + diz® + esxy + fiy® + giz’y + hizy?
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3D elements

Hexahedral element

L

N; = a; + bix + c;y + diz + e;zy + fizz + giyz + hizyz
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3D elements

Hexahedral element Tetrahedral element
S~
T~
Z
Q
X
N; = a; + bix + c;y + diz + e;zy + fizz + giyz + hizyz N; =a; +bix + c;y + d;z
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Problem definition in 2D

The Poisson equation:

0*u  0%u
_V(6$2+6y2>_f on
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Problem definition in 2D

The Poisson equation:

. 0*u . 0*u
ox? = 0y?

):f on

With boundary conditions
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Problem definition in 2D

The Poisson equation:

. 0*u . 0*u
ox? = 0y?

):f on

With boundary conditions

u=u(x,y) on I'p
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Problem definition in 2D

The Poisson equation:

0*u  0%u
_V(8x2+8y2> =f on

With boundary conditions

u=u(x,y) on I'p
vVu-n=h(x,y) on Iy
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Problem definition in 2D

The Poisson equation:

. 0*u . 0*u
ox? = 0y?

)zf on

With boundary conditions

=g

u=u(x,y) on I'p
vVu-n=h(z,y) on I'y

Aim: discretize into a system of equations T_;U
Ku=f

Where u contains approximate values for u(x, y) at the nodes of a finite element mesh
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Discretizing the solution in 2D

The

" with 2D shape functions

Approximate u as u

Nu

Z Ni(x,y)u;

h
u (xr,y) =

contains n

odal values

— N defines the interpolation

ch that v”

~ U

— Find u su
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Weak form equation in 2D

Weighted residual formulation:

. 0*u n 0*u _ ¢ B , 0*u n 0*u
or2  0y2 ) ox2 ' Oy2
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Weak form equation in 2D

Weighted residual formulation:

. 52u+82u _ ¢
ox2  Oy2 /)

]
TUDelft

_ W(

9%u

9%u

oz

0y?

)



Weak form equation in 2D

Weighted residual formulation:

*u  0*u 0*u  0%u
_V<8x2+8y2>_f _/wa<3x2+3y2> dQ—/wadQ
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Weak form equation in 2D

Weighted residual formulation:

0*u  O%u 0*u  O%u
_V(8x2+8y2>_f & —/wa<8x2+ay2>dﬁ—/gwfdﬁ Vo w
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Weak form equation in 2D

Weighted residual formulation:
0*u  O%u 0*u  O0%u
_1/(8x2%—ay2>-—j' & ——/Qun/<ax2%—ay2> dQ-—/QuJXKZ V w
Integration by parts (with divergence theorem):

2 2
/rzuu 8/u_+é3zb (ﬂ?zz——/[lﬂVUJ-VﬁLdf2+-/funﬁ7u-11dF YV w
Q Ox? oy Q r
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Weak form equation in 2D

Weighted residual formulation:
0*u  O%u 0*u  O0%u
_V(8x2+8y2>_f & _/wa<8x2+8y2>dg_/gwfdﬂ V w
Integration by parts (with divergence theorem):

2 2
/wu 8u+8u dQ:—/VVw-VudQ—I—/wI/Vu-ndF Y w
Q Ox? oy Q r

Substitution:

/VVw-VudQ—/wz/Vu-ndF:/wfdQ vV o w
Q r

Q
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Weak form equation in 2D

Weighted residual formulation:
0*u  O0%u 0*u  O0%u
_V(8x2+8y2>_f & —/wa<ax2—|—ay2>dﬁ—/gwfdﬂ V w
Integration by parts (with divergence theorem):

2 2
/wu (9u_|_8u dQ:—/VVw-VudQ—I—/wI/Vu-ndF Y w
Q Ox? oy Q r

Substitution:

/VVw-VudQ—/wz/Vu-ndF:/wfdQ vV o w
Q r

Q

With boundary conditions (w = 0onI'p and vVu -n = honI'y):

P /VVw-VudQ:/wfdQ+/ wh V w
TUDelft ’ "



Discretized form

Weak form equation

/wa-VudQ:/wfdQ+/ whdl V w
Q Q

I'n

Introduce discretization:

u(—uh:Nu, w<—wh:Nw, N:[Nl Ny - Nn}
(ON1 ON» 0N,
h 5 ox oz ox
Vu < Vu" = Bu, Vw < Vw" = Bw, B =VN =
ON1  ON- o ON,
| Oy 0Oy oy |

]
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Discretized form

Weak form equation

/VVw-VudQ:/wfdQ+/ whdl V w
Q Q

I'n

Introduce discretization:

u(—uh:Nu, w<—wh:NW, N:[Nl Ny - Nn}
(ON: ONa 0N,
h 5 Ox Ox ox
Vu < Vu" = Bu, Vw <~ Vw" = Bw, B =VN =
ON1  ON- ON,
| Oy 0Oy oy |

Substitution gives:

/BwuBudQ:/wadQ+ Nwhdl' V w = /BTquQu:/NdeQ+ N hdl
Q Q Q Q

I'n I'n

]
TUDelft



Finding the approximate solution

Discretized form:

Ku="f with K:/BTVBdQ and f:/NdeQ—i—
Q Q

Solving the FE equations finally requires:

e Numerical integration of K and f
e Constraining u; = u fornodesonI'p
e Solving the constrained system of equations for u

g

]
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Take home message

[ Strong form PDE

Weighted residual
Integration by parts

Neumann BCs

!

Weak form

FEM discretization: u(z) ~ ) . N;(z)u;

]
TU Delft

Nodes and elements
Shape functions

Bubnov-Galerkin

!

Discretized form J

Numerical integration
Dirichlet BCs

Solver

~\

!

Solution




One more Finite __________ Method

You have seen Finite Difference Method in Q1
e Easiest to implement and understand

e Super efficient for some problems

e Simple geometries and structured grids

Then the Finite Volume Method (week 2.1)
e Mostly for problems involving flow
e Local conservation is guaranteed

Now the Finite Element Method (week 2.2)

e Originally but not exclusively for solid mechanics

e Straighforward handling of boundary conditions

e Native support for unstructured meshes

e Higher order accuracy with higher order shape functions

e Many other cool possibilities from the choice of shape function

]
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Program for this week

Before Wednesday: Self study
e Book: Poisson equation in 1D + python implementation
e Videos: include additional material

Wednesday: Supported bar problem
e Derive weak form
e Extend python implementation

Friday: Diffusion equation
e Transient problem with FEM
e 2D on non-trivial geometry

Enjoy the week!
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