
The finite element method

MUDE week 2.2

Frans van der Meer



Finite elements and CEG

Three commercial codes with strong ties to this faculty



Finite elements and CEG

Three commercial codes with strong ties to this faculty



Finite elements and CEG

Three commercial codes with strong ties to this faculty



Finite elements and CEG

Three commercial codes with strong ties to this faculty



Finite elements and CEG

Three commercial codes with strong ties to this faculty



Finite elements and CEG

Three commercial codes with strong ties to this faculty



Finite elements and CEG

Three commercial codes with strong ties to this faculty



Finite elements and CEG

Three commercial codes with strong ties to this faculty



Finite elements and CEG

Three commercial codes with strong ties to this faculty



Finite elements and CEG

Three commercial codes with strong ties to this faculty



Finite elements and CEG

Three commercial codes with strong ties to this faculty



Finite elements and CEG

Three commercial codes with strong ties to this faculty

And several research codes



The Finite Methods

Finite difference method: discretize the derivatives

∂2u

∂x2
≈

ui−1 − 2ui + ui+1

∆x2

Finite volume method: discretize the conservation

∂u

∂t
= ν∇

2
u

∂

∂t

∫

Ω

u dΩ = ν

∫

Γ

∇u · n dΓ

Finite element method: discretize the solution

u(x) ≈
∑

i

Ni(x)ui



The Finite Methods

Finite difference method: discretize the derivatives

∂2u

∂x2
≈

ui−1 − 2ui + ui+1

∆x2

Finite volume method: discretize the conservation

∂u

∂t
= ν∇

2
u

∂

∂t

∫

Ω

u dΩ = ν

∫

Γ

∇u · n dΓ

Finite element method: discretize the solution

u(x) ≈
∑

i

Ni(x)ui ?



Discretizing the solution

The Poisson equation in 1D

−ν
∂2u

∂x2
= f

u

x



Discretizing the solution

The Poisson equation in 1D

−ν
∂2u

∂x2
= f

Approximate u as uh

u

x



Discretizing the solution

The Poisson equation in 1D

−ν
∂2u

∂x2
= f

Approximate u as uh , with

u
h(x) =

∑

i

Ni(x)ui = Nu

u

x

1

1

1

1

1

N1

N2

N3

N4

N5



Discretizing the solution

The Poisson equation in 1D

−ν
∂2u

∂x2
= f

Approximate u as uh , with

u
h(x) =

∑

i

Ni(x)ui = Nu

u

x

1

1

1

1

1

u1
u2

u3

u4
u5

N1

N2

N3

N4

N5



Discretizing the solution

The Poisson equation in 1D

−ν
∂2u

∂x2
= f

Approximate u as uh , with

u
h(x) =

∑

i

Ni(x)ui = Nu

How to find the best values ui?

u

x

1

1

1

1

1

u1
u2

u3

u4
u5

N1

N2

N3

N4

N5



From strong form to weak form equation

Weighted residual formulation:

−ν
∂2u

∂x2
= f ⇔ −

∫

Ω

wν
∂2u

∂x2
dx =

∫

Ω

wf dx ∀ w

Integration by parts:

∫

Ω

wν
∂2u

∂x2
dx = −

∫

Ω

∂w

∂x
ν
∂u

∂x
dx+

[

wν
∂u

∂x

]L

0

Substitution of boundary conditions:
∫

Ω

∂w

∂x
ν
∂u

∂x
dx =

∫

Ω

wf dx+ w(L)h(L)− w(0)h(0) ∀ w



From weak form to discretized form

Weak form equation
∫

Ω

∂w

∂x
ν
∂u

∂x
dx =

∫

Ω

wf dx+ [wh]L
0
∀ w

Introduce discretization:

u← u
h = Nu, w ← w

h = Nw (Bubnov-Galerkin)

∂u

∂x
←

∂uh

∂x
= Bu,

∂w

∂x
←

∂wh

∂x
= Bw

Substitution gives:
∫

Ω

BwνBu dx =

∫

Ω

Nwf dx+ [wh]L
0
∀ w ⇒

∫

Ω

B
T
νB dxu =

∫

Ω

N
T
f dx+

[

N
T
h
]L

0



The resulting system of equations

Ku = f with K =

∫

Ω

B
T
νB dx and f =

∫

Ω

N
T
f dx+

[

N
T
h
]L

0

expanded as: K =

∫

Ω











B1

B2

...
Bn











ν
[

B1 B2 · · · Bn

]

dx



The resulting system of equations

Ku = f with K =

∫

Ω

B
T
νB dx and f =

∫

Ω

N
T
f dx+

[

N
T
h
]L

0

expanded as: K =

∫

Ω











B1

B2

...
Bn











ν
[

B1 B2 · · · Bn

]

dx

with: Ni =



















0, x ≤ xi−1
x−xi−1

xi−xi−1
, xi−1 ≤ x < xi

xi+1−x

xi+1−xi
, xi ≤ x < xi+1

0, x > xi+1

and: Bi =
∂Ni

∂x
=















0, x ≤ xi−1
1

xi−xi−1
, xi−1 ≤ x < xi

−1

xi+1−xi
, xi ≤ x < xi+1

0, x > xi+1

After integration:

ν

∆x







































1 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2
. . . 0 0 0

. . .
. . .

. . .

0 0 0
. . . 2 −1 0

0 0 0 −1 2 −1

0 0 0 0 −1 1













































































u1

u2

u3

...

un−2

un−1

un







































=







































1

2
q∆x− h(0)

q∆x

q∆x
...

q∆x

q∆x

1

2
q∆x+ h(L)







































(with uniform mesh xi+1 − xi = ∆x

and constant source f(x) = q)



Now, what about these ‘Elements’?

The discretized Poisson equation: Ka = f with K =

∫

Ω

B
T
νB dx and f =

∫

Ω

N
T
f dx+

[

N
T
h
]L

0



Now, what about these ‘Elements’?

The discretized Poisson equation: Ka = f with K =

∫

Ω

B
T
νB dx and f =

∫

Ω

N
T
f dx+

[

N
T
h
]L

0



Now, what about these ‘Elements’?

The discretized Poisson equation: Ka = f with K =

∫

Ω

B
T
νB dx and f =

∫

Ω

N
T
f dx+

[

N
T
h
]L

0



Now, what about these ‘Elements’?

The discretized Poisson equation: Ka = f with K =

∫

Ω

B
T
νB dx and f =

∫

Ω

N
T
f dx+

[

N
T
h
]L

0



Now, what about these ‘Elements’?

The discretized Poisson equation: Ka = f with K =

∫

Ω

B
T
νB dx and f =

∫

Ω

N
T
f dx+

[

N
T
h
]L

0



Higher order elements can also be formulated, 3-nodes per element for quadratic

The discretized Poisson equation: Ka = f with K =

∫

Ω

B
T
νB dx and f =

∫

Ω

N
T
f dx+

[

N
T
h
]L

0



Shape function properties

Shape functions requirements for good performance:

• Partition of unity:
∑

i
Ni(x) = 1

⇒ represent constant solutions exactly

• Kronecker delta property: Ni(xj) =

{

1, i = j

0, i 6= j

⇒ interpret degrees of freedom as nodal values

⇒ apply boundary conditions directly



Discretizing a 2D solution with triangulation of the domain

u(x, y) ≈
∑

i

Ni(x, y)ui



Discretizing a 2D solution with triangulation of the domain

u(x, y) ≈
∑

i

Ni(x, y)ui



Discretizing a 2D solution with triangulation of the domain

u(x, y) ≈
∑

i

Ni(x, y)ui



Discretizing a 2D solution with triangulation of the domain

u(x, y) ≈
∑

i

Ni(x, y)ui

The nodal shape function spans multiple elements



Discretizing a 2D solution with triangulation of the domain

u(x, y) ≈
∑

i

Ni(x, y)ui

The nodal shape function spans multiple elements



Discretizing a 2D solution with triangulation of the domain

u(x, y) ≈
∑

i

Ni(x, y)ui

The nodal shape function spans multiple elements

Every element has 3 shape functions:

Ni = ai + bix+ ciy



2D shape functions on a quadrilateral elements

x

y



2D shape functions on a quadrilateral elements

x

y



2D shape functions on a quadrilateral elements

x

y



2D shape functions on a quadrilateral elements

x

x

y

y

N

Ni = ai + bix+ ciy + dixy

Quad-4 element



2D shape functions on a quadrilateral elements

x

x

y

y

N

Ni = ai + bix+ ciy + dix
2 + eixy + fiy

2 + gix
2y + hixy

2 + jix
2y2

Quad-9 element



2D shape functions on a quadrilateral elements

x

x

y

y

N

Ni = ai + bix+ ciy + dix
2 + eixy + fiy

2 + gix
2y + hixy

2

Quad-8 element



3D elements

x

y

z

Hexahedral element

Ni = ai + bix+ ciy + diz + eixy + fixz + giyz + hixyz



3D elements

x

y

z

Hexahedral element Tetrahedral element

Ni = ai + bix+ ciy + diz + eixy + fixz + giyz + hixyz Ni = ai + bix+ ciy + diz



Problem definition in 2D

The Poisson equation:

−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f on Ω

Ω

x

y

ū

h



Problem definition in 2D

The Poisson equation:

−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f on Ω

Ω

x

y

ū

h

With boundary conditions



Problem definition in 2D

The Poisson equation:

−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f on Ω

Ω

x

y

ū

h

With boundary conditions

u = ū(x, y) on ΓD



Problem definition in 2D

The Poisson equation:

−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f on Ω

Ω

x

y

ū

h

With boundary conditions

u = ū(x, y) on ΓD

ν∇u · n = h(x, y) on ΓN



Problem definition in 2D

The Poisson equation:

−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f on Ω

Ω

x

y

ū

h

With boundary conditions

u = ū(x, y) on ΓD

ν∇u · n = h(x, y) on ΓN

Aim: discretize into a system of equations

Ku = f

Where u contains approximate values for u(x, y) at the nodes of a finite element mesh



Discretizing the solution in 2D

The Poisson equation:

−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f

Approximate u as uh with 2D shape functions

u
h(x, y) =

∑

i

Ni(x, y)ui = Nu

– u contains nodal values

– N defines the interpolation

→ Find u such that uh ≈ u



Weak form equation in 2D

Weighted residual formulation:

−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f − ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f



Weak form equation in 2D

Weighted residual formulation:

−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f − wν

(

∂2u

∂x2
+

∂2u

∂y2

)

= wf



Weak form equation in 2D

Weighted residual formulation:

−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f −

∫

Ω

wν

(

∂2u

∂x2
+

∂2u

∂y2

)

dΩ =

∫

Ω

wf dΩ



Weak form equation in 2D

Weighted residual formulation:

−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f ⇔ −

∫

Ω

wν

(

∂2u

∂x2
+

∂2u

∂y2

)

dΩ =

∫

Ω

wf dΩ ∀ w



Weak form equation in 2D

Weighted residual formulation:

−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f ⇔ −

∫

Ω

wν

(

∂2u

∂x2
+

∂2u

∂y2

)

dΩ =

∫

Ω

wf dΩ ∀ w

Integration by parts (with divergence theorem):

∫

Ω

wν

(

∂2u

∂x2
+

∂2u

∂y2

)

dΩ = −

∫

Ω

ν∇w · ∇u dΩ +

∫

Γ

wν∇u · n dΓ ∀ w



Weak form equation in 2D

Weighted residual formulation:

−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f ⇔ −

∫

Ω

wν

(

∂2u

∂x2
+

∂2u

∂y2

)

dΩ =

∫

Ω

wf dΩ ∀ w

Integration by parts (with divergence theorem):

∫

Ω

wν

(

∂2u

∂x2
+

∂2u

∂y2

)

dΩ = −

∫

Ω

ν∇w · ∇u dΩ +

∫

Γ

wν∇u · n dΓ ∀ w

Substitution:
∫

Ω

ν∇w · ∇u dΩ−

∫

Γ

wν∇u · n dΓ =

∫

Ω

wf dΩ ∀ w



Weak form equation in 2D

Weighted residual formulation:

−ν

(

∂2u

∂x2
+

∂2u

∂y2

)

= f ⇔ −

∫

Ω

wν

(

∂2u

∂x2
+

∂2u

∂y2

)

dΩ =

∫

Ω

wf dΩ ∀ w

Integration by parts (with divergence theorem):

∫

Ω

wν

(

∂2u

∂x2
+

∂2u

∂y2

)

dΩ = −

∫

Ω

ν∇w · ∇u dΩ +

∫

Γ

wν∇u · n dΓ ∀ w

Substitution:
∫

Ω

ν∇w · ∇u dΩ−

∫

Γ

wν∇u · n dΓ =

∫

Ω

wf dΩ ∀ w

With boundary conditions (w = 0 on ΓD and ν∇u · n = h on ΓN ):
∫

Ω

ν∇w · ∇u dΩ =

∫

Ω

wf dΩ +

∫

ΓN

wh ∀ w



Discretized form

Weak form equation
∫

Ω

ν∇w · ∇u dΩ =

∫

Ω

wf dΩ +

∫

ΓN

whdΓ ∀ w

Introduce discretization:

u← u
h = Nu, w ← w

h = Nw, N =
[

N1 N2 · · · Nn

]

∇u← ∇u
h = Bu, ∇w ← ∇w

h = Bw, B = ∇N =











∂N1

∂x

∂N2

∂x
· · ·

∂Nn

∂x

∂N1

∂y

∂N2

∂y
· · ·

∂Nn

∂y













Discretized form

Weak form equation
∫

Ω

ν∇w · ∇u dΩ =

∫

Ω

wf dΩ +

∫

ΓN

whdΓ ∀ w

Introduce discretization:

u← u
h = Nu, w ← w

h = Nw, N =
[

N1 N2 · · · Nn

]

∇u← ∇u
h = Bu, ∇w ← ∇w

h = Bw, B = ∇N =











∂N1

∂x

∂N2

∂x
· · ·

∂Nn

∂x

∂N1

∂y

∂N2

∂y
· · ·

∂Nn

∂y











Substitution gives:
∫

Ω

BwνBu dΩ =

∫

Ω

Nwf dΩ +

∫

ΓN

NwhdΓ ∀ w ⇒

∫

Ω

B
T
νB dΩu =

∫

Ω

N
T
f dΩ +

∫

ΓN

N
T
h dΓ



Finding the approximate solution

Discretized form:

Ku = f with K =

∫

Ω

B
T
νB dΩ and f =

∫

Ω

N
T
f dΩ +

∫

ΓN

N
T
h dΓ

Solving the FE equations finally requires:

• Numerical integration of K and f

• Constraining ui = ū for nodes on ΓD

• Solving the constrained system of equations for u

Ω

x

y

ū

h



Take home message

Strong form PDE

Weak form

Discretized form

Solution

Weighted residual

Integration by parts

Neumann BCs

Nodes and elements

Shape functions

Bubnov-Galerkin

Numerical integration

Dirichlet BCs

Solver

FEM discretization: u(x) ≈
∑

i
Ni(x)ui



One more Finite Method

You have seen Finite Difference Method in Q1

• Easiest to implement and understand

• Super efficient for some problems

• Simple geometries and structured grids

Then the Finite Volume Method (week 2.1)

• Mostly for problems involving flow

• Local conservation is guaranteed

Now the Finite Element Method (week 2.2)

• Originally but not exclusively for solid mechanics

• Straighforward handling of boundary conditions

• Native support for unstructured meshes

• Higher order accuracy with higher order shape functions

• Many other cool possibilities from the choice of shape function



Program for this week

Before Wednesday: Self study

• Book: Poisson equation in 1D + python implementation

• Videos: include additional material

Wednesday: Supported bar problem

• Derive weak form

• Extend python implementation

Friday: Diffusion equation

• Transient problem with FEM

• 2D on non-trivial geometry

Enjoy the week!


	Finite elements and CEG
	The Finite __________ Methods
	Discretizing the solution
	From strong form to weak form equation
	From weak form to discretized form
	The resulting system of equations
	Now, what about these `Elements'?
	Higher order elements can also be formulated, 3-nodes per element for quadratic
	Shape function properties
	Discretizing a 2D solution with triangulation of the domain
	2D shape functions on a quadrilateral elements
	3D elements
	Problem definition in 2D
	Discretizing the solution in 2D
	Weak form equation in 2D
	Discretized form
	Finding the approximate solution
	Take home message
	One more Finite __________ Method
	Program for this week

