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Learning objectives

At the end of this lecture, you should be able to

* Describe the key aspects of the Finite Volume Method and identify
the differences with the Finite Difference Method

* Understand PDEs nature to define appropriate numerical schemes
* Apply FVM to structured and unstructured (orthogonal) meshes

* |ldentify the problems of non-orthogonal meshes



FVM

= Monday: fundamental concepts
= Wednesday: treat advection in 1D and 2D

= Friday: diffusion in unstructured meshes!
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(») Finite Differences
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(b Finite Volumes

Richters F. “4k Aerodynamics of Different Geometries — 2D Navier Stokes equations”

<:> https://www.youtube.com/watch?v=bJX8fVsq50Q

= Finite Volumes that can vary in shape can accommodate
more easily complex geometries! (see rabbit)



Concepts: FDM vs FVM
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= The finite difference method approximates the rate of
change of a function using numerical derivatives.
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Concepts: FDM vs FVM
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= The finite volume method defines control volumes
upon which a quantity is conserved by approximating
the fluxes of that quantity in the active surfaces
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Mass conservation
Az -
Rate of -~ ¢
. -T— o ' —
d0(pAxAyAz) increase of E
ot - mass inside \“
the volume Y, A T |
y Ax
Mass flow 3(pw) A 3 (o) A
rate across _ TP BXY A, — pr) ox
the volume (pu 0x 2) e U P
surfaces
dp N d(pu) N d(pv) N d(pw) _ 0
dt 0x dy 0z
3D mass conservation for 9p +V.(p1) = 0 3D mass conservation for N
compressible fluids ot W incompressible fluids vou=0
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Transport equation or Advection-Diffusion equation

dp¢ -
S + V.(popu) = V.(DVg) + Fg
Rate of Net rate of flow Rate of increase Rate of increase
increase of ¢ of ¢ out of fluid of ¢ due to of ¢ due to
of fluid volume  volume DIFFUSION sources
CONVECTION
We are going to assume a
o _ ) passive scalar quantity = the
Unsteady 1D diffusion equation ar _ yg scalar quantity does not
dt dz influence the flow
I . 0°T
Steady 1D diffusion equation 322 a(T—T,) =0
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Finite Volume Method

%09 1y V.(pp)dV = | v.(OVp)av + | F,dv
Integration over the volume ot + (ppu) — .(DV9) ¢
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Apply Gauss theorem to transform some qudv + jr_i. (ppu)dS = jr_i. (DVp)dS + jF¢ dv
volume integrals into surface integrals J at T < J
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Application to 1D steady diffusion equation

The following 1D equation describes the steady state solution of the temperature along a pin that sticks out of a

furnace. The rest of the pin is exposed to the ambient. Az
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Japt v + fﬁ’. pu)ds = fﬁ_(pvqb)dg n Vqude
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S!V 7. (VT) dS +S[ #t,. (VT) dS—Ja(T—TS) dv =0
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Application to 1D steady diffusion equation

The following 1D equation describes the steady state solution of the temperature along a pin that sticks out of a

furnace. The rest of the pin is exposed to the ambient. Az
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dx?2 B a(T B TS) =0 /)centroid
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dp . ., N
J th + fn. pu)dS = fn.(Dqu)dS + fF¢,dV
V S S %
In 1D the Finite Volume
fﬁw.(VT) ds + fﬁe.(VT) ds — J a(T —T,)dV = 0 Method ends up giving the
exact same algebraic
Sw Se v representation as the Finite
Difference method using
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Nature of PDEs

= Elliptic: steady, the perturbation of one inner point affects the rest of points

d°T
——a(T-T,) =0
dx? .
The physical
behaviour of PDEs
= Parabolic: unsteady, the information propagates in all directions at an infinite speed influences the
, adequate
ar _ ,,ﬂ numerical schemes
dt da? to solve them!

= Hyperbolic: generally unsteady, the information propagates at a finite speed

dp ~ 0¢

ot +C%—O
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Exercise: apply FVM to the convection equation

= Don’t worry about the boundaries now!

O¢p 8¢S_ . B _
EJrc%_O ./VV rdV[Sn rdS
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1D Convection equation

1 initial condition (state of ¢ at t=0 along the entire domain) and 1 boundary condition at the boundary from which the
information is being propagated.

op 0

ot +C$—U

The information being propagated comes from “upwind” and central differences does not care about flow
direction (propagation of information direction).

To be tested on
Wednesday ©

Upwind schemes solve this issue but at a cost: numerical (fake) diffusion.
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Unstructured mesh ﬁ R T

= A mesh can be composed of any shape (or combination of shapes).

= The quantity ¢ is defined at the centroids

/[ /

Diffusion in
unstructured meshes
will be treated on
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Diffusion: orthogonal vs non-orthogonal meshes

In orthogonal meshes, constructed for example with equilateral triangles. the central difference is an adequate
approach to compute the flux due to diffusion

For non-orthogonal meshes, a new term is required and surrounding ¢'s

dp 09
on  dd,

. ¢ b
f 7. (DV$) dS = D——AS

S

orthogonal non-orthogonal
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Takeaways

Advection dominated problems require different treatment than diffusion dominated problems

= FVM is based on conservation laws and fluxes trough the volume’s surfaces. This is possible using Gauss'’s
theorem.

- FVM is especially adequate for complex geometries and is based on intuitive physical mechanisms

= Orthogonal meshes limit the geometries that can be represented. Non-orthogonal meshes can represent them but
come with downsides regarding complexity of implementation, computational time and added error sources

= The degree of non-orthogonality should be kept low
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