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VLAM GEBRUIKEN

1 Selecteer de vlam. Klik rechter-
muisknop en kies ‘Kopiëren’. 

2 Plak deze op de gewenste slide. Klik 
rechtermuisknop om de vlam een 
opvulkleur te geven.

At the end of this lecture, you should be able to

• Describe the key aspects of the Finite Volume Method and identify 
the differences with the Finite Difference Method

• Understand PDEs nature to define appropriate numerical schemes

• Apply FVM to structured and unstructured (orthogonal) meshes

• Identify the problems of non-orthogonal meshes

Learning objectives
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FVM

▪ Monday: fundamental concepts

▪ Wednesday: treat advection in 1D and 2D

▪ Friday: diffusion in unstructured meshes!
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FVM
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▪ Finite Volumes that can vary in shape can accommodate 
more easily complex geometries! (see rabbit)

Richters F. “4k Aerodynamics of Different Geometries – 2D Navier Stokes equations”

https://www.youtube.com/watch?v=bJX8fVsq5oQ



Concepts: FDM vs FVM 

▪ The finite difference method approximates the rate of 
change of a function using numerical derivatives.
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Concepts: FDM vs FVM 

▪ The finite difference method approximates the rate of 
change of a function using numerical derivatives.
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▪ The finite volume method defines control volumes 
upon which a quantity is conserved by approximating 
the fluxes of that quantity in the active surfaces 



Mass conservation
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Transport equation or Advection-Diffusion equation

▪ Unsteady 1D diffusion equation

▪ Steady 1D diffusion equation
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Finite Volume Method
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▪ Integration over the volume

▪ Apply Gauss theorem to transform some 
volume integrals into surface integrals 



Application to 1D steady diffusion equation

▪ The following 1D equation describes the steady state solution of the temperature along a pin that sticks out of a 
furnace. The rest of the pin is exposed to the ambient. 
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Application to 1D steady diffusion equation

▪ The following 1D equation describes the steady state solution of the temperature along a pin that sticks out of a 
furnace. The rest of the pin is exposed to the ambient. 
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In 1D the Finite Volume 

Method ends up giving the 

exact same algebraic 

representation as the Finite 

Difference method using 

central differences!



Nature of PDEs

▪ Elliptic: steady, the perturbation of one inner point affects the rest of points

▪ Parabolic: unsteady, the information propagates in all directions at an infinite speed

▪ Hyperbolic: generally unsteady, the information propagates at a finite speed
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The physical 

behaviour of PDEs 

influences the 

adequate 

numerical schemes 

to solve them!



Exercise: apply FVM to the convection equation

▪ Don’t worry about the boundaries now!
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1D Convection equation

▪ 1 initial condition (state of 𝜙 at t=0 along the entire domain) and 1 boundary condition at the boundary from which the 
information is being propagated.
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The information being propagated comes from “upwind” and central differences does not care about flow 

direction (propagation of information direction). 

Upwind schemes solve this issue but at a cost: numerical (fake) diffusion.

To be tested on 

Wednesday ☺



Unstructured mesh

▪ A mesh can be composed of any shape (or combination of shapes). 

▪ The quantity 𝜙 is defined at the centroids  
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FDM

FVM

Diffusion in 

unstructured meshes 

will be treated on 

Friday ☺



Diffusion: orthogonal vs non-orthogonal meshes

▪ In orthogonal meshes, constructed for example with equilateral triangles. the central difference is an adequate 
approach to compute the flux due to diffusion

▪ For non-orthogonal meshes, a new term is required and surrounding 𝜙′s
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Takeaways

▪ Advection dominated problems require different treatment than diffusion dominated problems

▪ FVM is based on conservation laws and fluxes trough the volume’s surfaces. This is possible using Gauss’s 
theorem.

▪ FVM is especially adequate for complex geometries and is based on intuitive physical mechanisms

▪ Orthogonal meshes limit the geometries that can be represented. Non-orthogonal meshes can represent them but 
come with downsides regarding complexity of implementation, computational time and added error sources

▪ The degree of non-orthogonality should be kept low
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