CEGM1000
Modelling, Uncertainty and Data for Engineers (round 2)

Week 2.1
Finite Volume Method

Jaime Arriaga

with A LOT of support from Robert Lanzafame and Isabel Slingerland and the rest of MUDEs' wonderful team

Learning objectives

At the end of this lecture, you should be able to

- Describe the key aspects of the Finite Volume Method and identify the differences with the Finite Difference Method
- Understand PDEs nature to define appropriate numerical schemes
- Apply FVM to structured and unstructured (orthogonal) meshes
- Identify the problems of non-orthogonal meshes

FVM

- Monday: fundamental concepts
- Wednesday: treat advection in 1D and 2D
- Friday: diffusion in unstructured meshes!

FVM

Richters F. "4k Aerodynamics of Different Geometries – 2D Navier Stokes equations" https://www.youtube.com/watch?v=bJX8fVsq5oQ

 Finite Volumes that can vary in shape can accommodate more easily complex geometries! (see rabbit)

Concepts: FDM vs FVM

 The finite difference method approximates the rate of change of a function using numerical derivatives.

Concepts: FDM vs FVM

 The finite difference method approximates the rate of change of a function using numerical derivatives.

 The finite volume method defines control volumes upon which a quantity is conserved by approximating the fluxes of that quantity in the active surfaces

Mass conservation

$$\frac{\partial(\rho\Delta x\Delta y\Delta z)}{\partial t} = \begin{array}{c} \text{Rate of} \\ \text{increase of} \\ \text{mass inside} \\ \text{the volume} \end{array}$$

Mass flow rate across the volume surfaces

$$\left(\rho u - \frac{\partial(\rho u)}{\partial x} \frac{\Delta x}{2}\right) \Delta y \Delta z - \left(\rho u + \frac{\partial(\rho u)}{\partial x} \frac{\Delta x}{2}\right) \Delta y \Delta z + \cdots$$

$$\frac{\partial\rho}{\partial t} + \frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} + \frac{\partial(\rho w)}{\partial z} = 0$$

3D mass conservation for compressible fluids

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0$$

3D mass conservation for incompressible fluids

$$\nabla \cdot \vec{u} = 0$$

Transport equation or Advection-Diffusion equation

$$\frac{\partial \rho \phi}{\partial t} + \nabla \cdot (\rho \phi \vec{u}) = \nabla \cdot (D \nabla \phi) + F_{\phi}$$

Rate of increase of ϕ of fluid volume

Net rate of flow of ϕ out of fluid volume **CONVECTION**

Rate of increase of ϕ due to **DIFFUSION**

Rate of increase of ϕ due to sources

Unsteady 1D diffusion equation

$$rac{dT}{dt} =
u rac{d^2T}{dx^2}$$

We are going to assume a passive scalar quantity = the scalar quantity does not influence the flow

Steady 1D diffusion equation

$$\frac{\partial^2 T}{\partial x^2} - \alpha (T - T_S) = 0$$

Finite Volume Method

Integration over the volume

$$\int_{V} \frac{\partial \rho \phi}{\partial t} dV + \int_{V} \nabla \cdot (\rho \phi \vec{u}) dV = \int_{V} \nabla \cdot (D \nabla \phi) dV + \int_{V} F_{\phi} dV$$

Apply Gauss theorem to transform some volume integrals into surface integrals

$$\int_{V} \frac{\partial \rho \phi}{\partial t} dV + \int_{S} \vec{n} \cdot (\rho \phi \vec{u}) dS = \int_{S} \vec{n} \cdot (D \nabla \phi) dS + \int_{V} F_{\phi} dV$$

Application to 1D steady diffusion equation

• The following 1D equation describes the steady state solution of the temperature along a pin that sticks out of a furnace. The rest of the pin is exposed to the ambient. Δx

$$\frac{\partial^2 T}{\partial x^2} - \alpha (T - T_s) = 0$$

$$\int_{V} \frac{\partial \rho \phi}{\partial t} dV + \int_{S} \vec{n}. (\rho \phi \vec{u}) dS = \int_{S} \vec{n}. (D \nabla \phi) dS + \int_{V} F_{\phi} dV$$

$$\int_{S_W} \vec{n}_w \cdot (\nabla T) \, dS + \int_{S_e} \vec{n}_e \cdot (\nabla T) \, dS - \int_V \alpha (T - T_S) \, dV = 0$$

Application to 1D steady diffusion equation

• The following 1D equation describes the steady state solution of the temperature along a pin that sticks out of a furnace. The rest of the pin is exposed to the ambient. Δx

$$\frac{\partial^2 T}{\partial x^2} - \alpha (T - T_s) = 0$$

$$\int_{V} \frac{\partial \rho \phi}{\partial t} dV + \int_{S} \vec{n}. (\rho \phi \vec{u}) dS = \int_{S} \vec{n}. (D \nabla \phi) dS + \int_{V} F_{\phi} dV$$

$$\int_{S_W} \vec{n}_w. (\nabla T) dS + \int_{S_e} \vec{n}_e. (\nabla T) dS - \int_{V} \alpha (T - T_s) dV = 0$$

In 1D the Finite Volume
Method ends up giving the
exact same algebraic
representation as the Finite
Difference method using
central differences!

Nature of PDEs

Elliptic: steady, the perturbation of one inner point affects the rest of points

$$\frac{\partial^2 T}{\partial x^2} - \alpha (T - T_s) = 0$$

Parabolic: unsteady, the information propagates in all directions at an infinite speed

$$rac{dT}{dt} =
u rac{d^2T}{dx^2}$$

Hyperbolic: generally unsteady, the information propagates at a finite speed

$$rac{\partial \phi}{\partial t} + c \, rac{\partial \phi}{\partial x} = 0$$

The physical behaviour of PDEs influences the adequate numerical schemes to solve them!

Exercise: apply FVM to the convection equation

Don't worry about the boundaries now!

$$rac{\partial \phi}{\partial t} + c \, rac{\partial \phi}{\partial x} = 0 \qquad \qquad \int_V
abla \cdot {f r} \, dV = \int_S {f n} \cdot {f r} \, dS$$

1D Convection equation

• 1 initial condition (state of ϕ at t=0 along the entire domain) and 1 boundary condition at the boundary from which the information is being propagated.

$$rac{\partial \phi}{\partial t} + c \, rac{\partial \phi}{\partial x} = 0$$

The information being propagated comes from "upwind" and central differences does not care about flow direction (propagation of information direction).

Upwind schemes solve this issue but at a cost: numerical (fake) diffusion.

To be tested on Wednesday ©

Unstructured mesh

- A mesh can be composed of any shape (or combination of shapes).
- The quantity ϕ is defined at the centroids

FVM

Diffusion: orthogonal vs non-orthogonal meshes

- In orthogonal meshes, constructed for example with equilateral triangles. the central difference is an adequate approach to compute the flux due to diffusion
- For non-orthogonal meshes, a new term is required and surrounding ϕ' s

$$\int_{S} \vec{n}. (D\nabla \phi) dS = D \frac{\partial \phi}{\partial n} \Delta S$$

Takeaways

- Advection dominated problems require different treatment than diffusion dominated problems
- FVM is based on conservation laws and fluxes trough the volume's surfaces. This is possible using Gauss's theorem.
- FVM is especially adequate for complex geometries and is based on intuitive physical mechanisms
- Orthogonal meshes limit the geometries that can be represented. Non-orthogonal meshes can represent them but come with downsides regarding complexity of implementation, computational time and added error sources
- The degree of non-orthogonality should be kept low

