Week 1.7 : Univariate continuous
distributions

Patricia Mares Nasarre
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Recap of Weeks 5 and 6

Deterministic models over time and space
= [finputis ‘a’, output will always be b’
= Numerical integration
= FDM

Physical Laws

Fluid mechanics Continuous

Partial Differential

Electromagnetism
Thermodynamics
Solid mechanics

Equations (PDE)
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Recap of Week 1

Deterministic vs Stochastic

Deterministic models are those which for some given inputs, always provide the same output. For instance, a
equation which gives the average concentration of CQ, in a city as function of the traffic. For a certain value
of traffic, the model will always provide the same concentration of CQO,. Therefore, these models that there
is no uncertainty. On the contrary, stochastic models are those which embrace the uncertainty. This is

Deterministic — If input is ‘a’, output will

stochastic models will produce different outputs for a given input. In fact, the inputs and outputs of always be’b’

stochastic models are probabilistic distributions (you will learn more about this later!), which relate the values S

of the variable with the probability of observing it. Stochastic — If input is ‘a’. what is the
J

And how do | choose between a deterministic and stochastic model? pro babil |ty of ‘b’

All systems, in reality, are stochastic to our eyes, since we never truly know the actual properties and inputs.
However, under certain circumstances, this stochasticity can be neglected. Let us take a look to some
examples of deterministic and stochastic systems:

]
TU Delft 15-10-2024 4



Recap of Week 1

Deterministic — expected deformation

Stochastic — beach profile after storm

lF
L L

- Lab experiment

- Material properties known (thoroughly tested)
- Loading applied by a calibrated machine

- Measurements taken from calibrated gauges

A

Ve
/
- Grain size?

- Wave statistics?
- Wave trains?
- Initial profile? Previous wave storms?
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Deterministic design (pre-MUDE) — parameters given
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height [meters]

Aleatoric
Recap of Weeks 2 and 3 = intrinsic phenomenon;

typically associated with
variations that occur in

65 -
T nature
60 -
| Epistemic
23] e\ - T = lack of knowledge; often
PDF a Normal Distribution CDF a Normal Distribution .
- g=00,0=1.0 - §=00,0=10 - called model Uncertalnty
50 ’
Jd | Error
041 0.8 1
45 2 5 : = deficiency in any stage
e § 08 . of modelling/simulation
z B not due to lack of
g 02 g 04 knowledge
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Aleatoric
This week = intrinsic phenomenon;

typically associated with
variations that occur in
nature

Epistemic

: : . = lack of knowledge; often
Of aleatOrlC UnCertal nty IN called model uncertainty

ield?
your field” Error

= deficiency in any stage
of modelling/simulation
not due to lack of
knowledge

What would be an example

]
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Joln the Vevox session

Go to vevox.app
Enter the session ID: 175-839-818

Or scan the QR code
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= 36/54 Join at: vevox.app ID:; 175-839-818 Question slide

Give an example of aleatoric uncertainty
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= 36 Join at: vevox.app ID: 175-839-818 Showing Results

Give an example of aleatoric uncertainty

climate change

earthquake WI n d S p e e d stoepn:(r)ld go waves

wave spectra dice roll

sediment transport ===

water parameters Waves

WI ndwave height

material defect wave speed rainfall

flipping a coin

deep waves diment dice
earthquakes s

seismic events

RESULTS SLIDE




Aleatoric

= intrinsic phenomenon;
typically associated with

This week

=)< variations that occur in
‘ “ ) nature
—
Storm evolution A LAY ﬁ ’ \ E . t .
LR pIiStemic
— ﬁ
/ p— iy =] = = Jack of knowledge; often
234 == called model uncertainty
Ly
= Error
meﬂi;“a'zt;‘;wgn,ﬁfszs;msﬁgafi_zesg'i%tg"nfmAz — = deficiency in any stage
= EmPircalDFofS | 161 ¢ Generated samples . of modelling/simulation
not due to lack of
12 knowledge
S10
£ 06 Variables are NOT necessarily
041 Gaussian-distributed!

Theoretical quantiles
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How do we model this type of
uncertainty?

Probability distribution functions
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Continuous distribution functions — why?

= Continuous random variables

MHMHEOmW
MmmHHumwm
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Continuous distribution functions — concept

= Continuous random variables

= Mathematical model which relates the
values of a random variable and their
probability
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Value/quantile <—— probability
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Continuous distribution functions — PDF

0.40 -
= Continuous random variables 0.35 -
0.30 -

0.25 4

= Mathematical model which relates the

values of a random variable and their § 020 1
probability o1s.
0.10 +
= Probability density function (PDF) fx(z) 0.05 1
0.00 +
fx(z)dz = P(z < X < z + dz) 4 3 2 1 0 1 2 3 4
fx(xz) >0 PDF of the Gaussian distribution
+00
o fx(z)dz =1 IEVESTY
f f(z) = —Le 33

o/ 2w
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From PDF to CDF

= Probability density function (PDF) fx(z)

CDF of the Gaussian distribution
= Cumulative distribution function (CDF) F(z) = [*_ f(z)dz F(z) =1 (1 + erf (‘”‘“))

04/2
0.5 1.0
— u=0,0=1 — u=0,0=1
0.4 1 0.8 -
™
0.3 - vi 0.6
- x
'g_ o
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0.2 1 = 0.4 4
(g
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0.0 0.0
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From PDF to CDF

0.84

]

1.0

0.8 1

0.2 -

0.5
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From PDF to CDF — exceedance

0.5

fj;o fx(z)dz =1

0.4 -

0.3 -

0.2 -

0.1 -

o —————————————

Tuvelrt

1.0

0.8 A

0.6 A

0.4

0.2

— F(x) =P[X = x]
= 1= F(x)=P[X = x]

=1-0.84=0.16




Parameters in PDF and CDF — Gaussian distribution

= Probability density function (PDF) f(z) =

= Cumulative distribution function (CDF)  F(z) =

0.40 - 1.0 -
0.35 -
0.8
0.30 -
0.25 - W 0.6
>
M= e
0.20 - N
-8' I
0.15 - x 041
L
0.10 -
0.2
0.05 -
0.00 { m====" 0.0
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Empirical distribution functions
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Continuous distribution functions

Mathematical model which relates the values of a random variable and their probability

But what do | want to model?

Observations =)  Empirical distribution function

| want a model which is able to reproduce the probabilistic behavior in the observations
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Empirical distribution functions

We can define from our observations an empirical PDF and empirical CDF

Let's see it with an example!

0.0 1
1974-09 1974-11 1975-01 1975-03 1975-05 1975-07 1975-09

]
TUDelft o




Empirical CDF

We need to assign a non-exceedance probability to each observation.

1.0 1

0.8 1

0.6 1

P[X = x]

0.4 4

0.2

0.0 ~

0.0 25
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5.0

75

10.0
Ws (m/s)

125

15.0

17.5

>> read observations

>> x = sort observations 1n ascending
order

>> length = the number of observations

>> probability of not exceeding = (range
of integer wvalues from 1 \ to length) /
length + 1

>> Plot x versus probability of not
exceeding



Empirical CDF

Let's do it slowly!
3.2
4.5
3.8

7.5
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Length =5

1.0 1

0.8 1

0.6 1

)
Vi
X
Q‘ I
0.4
| >> re¢
; 0.2
>> -ng
_ordejoﬂ_
; 0.0 25 5.0 7.5 100 125 150 175
I >> le | We (m/s)
>> probability of not exceeding = (range
of integer wvalues from 1 to length) /
length + 1
é >> Plot x wversus probability of not
exceeding
15-10-2024 25



Empirical PDF

f(2) = F'(z) = limp, o 225212

0.12 -

0.10 -

0.08 -

pdf

0.06 -

0.04 -

0.02 -

0.00 . T

0.0 2.5
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5.0

7.5

10.0
Ws (m/s)

12.5

>>

>>

>>

>>

Az

read observations

bin size = 2 #delta x

min value = minimum value of observations
max value = maximum value observations
n bins = (max value - min value)/bin size
bin edges = range of n bins + 1 values

between the truncated wvalue of min_value
and the ceiling value of max value

bin count = empty list
for each bin:
append the number of observations between

the bin edges to count

>>

>>

>>

freq = count / number of observations
densities = freq / bin size

Plot barplot densities



Why non-Gaussian?

Concept of tail
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Does this look Gaussian?

pdf

0.40 -
0.12
0.35 A
0.10 0.30
0.08 1 0.25 A
B 0.20
0.06 -
There is a tail!! 0.15 1
0.04 -
0.10 -
0.02 A 0.05 -
0.00 -
D.OO T T T T T T T T T T T T T T T T T
0.0 2.5 5.0 7.5 10. 12.5 15.0 17.5 -4 -3 -2 -1 0 1 2 3 a4
Ws (m/; X
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Why 1s the tail important?

0.12 ~

0.10 ~

0.08 -

pdf
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0.04 -

0.02 -

0.00

|
|
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|
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= You are designing a building against
wind loading

= Which value would you use for design?

= You vote!



=& 51/56 Join at: vevox.app ID:; 175-839-818 Question slide

Which design value would you choose?

2.5 m/s (mode of the ecdf)

| 0%

5.0 m/s (mean)

] 0%

15.0 m/s (approx. max observation)

| ow
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= 51 Join at: vevox.app ID: 175-839-818 Showing Results

Which design value would you choose?

2.5 m/s (mode of the ecdf)

] | 13.73%
5.0 m/s (mean)
] | 23.53%

15.0 m/s (approx. max observation)

62.75%

RESULTS SLIDE




We typically design to withstand extreme values

0.12 ~

0.10 ~

0.08 -

pdf

0.06 -

0.04 -

0.02 -

0.00

0.0 25
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5.0

75

10.0
Ws (m/s)

12.5

15.0

17.5

= We want the building to perform in
ordinary conditions (around central
moments)

= We also want the building to withstand
the storms

= Tails can also be negative!

= E.g.: nutrients concentration to
ensure the survivability of species



Brief intro to a selection of parametric
distributions
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Parametric distributions in the book

|5. Continuous Distributions v EXponentia| diStribution # 1 GaUSS|an There are a Iot

5.1. PDF and CDF

Another widely used distribution function is the Exponential distribution. For instance, it is

5.2. Empirical Distributions applied to model the waiting time between succesive events of a Poisson process. The 2 . U n |f0rm m orein th €
5.3. Parametric o PDF of the Exponential distribution is given by . I |te rat ure I I
distributions f(z) = de = forz>0,1>0 3 . EX pO n e nt | al
Revisiting Gaussian fz)=0  otherwise . .
distribution 4. Gumbel (left- and right-tailed)
. where ) is the parameter of the distribution, which is often called rate. In the right pannel
Non-Gaussian ) e . .
o of the figure below, an example of two Exponential distributions with A = 1 and A = 2 is
distributions shown. As you can see, the maximum density in the PDF of en Exponential distribution is 5 . Log no rm al

Uniform distribution located at zero and it is followed by an Exponential decay. The higher the parameter A, the

E tial distributi higher the value of the density in z = 0 and the faster the decay. In other words, the
xponential distribution
P higher the parameter A, the more concentrated the values of the random variable which

Gumbel distribution are likely to occur and, thus, the lower the standard deviation. This can be seen on the left

pannel of the figure, where random samples of the distribution are plotted. There you can

Read about the rest in the book.
see how higher values of the random variable x appear when A = 1, presenting then a

ey o et e What do | need to know? how the
5.4. Fitting parametric v 4 2 1:75 "  dlSthbUtIOﬂ |OOkS (PDF/CDF), hOW |t
;’;P“ o 3 : AR responds to changes in the parameters
.5. Parameterization o .

continuous distributions ‘ SN AN and some basic properties (symmetry
| or bounds).

Lognormal distribution

e
non
o
P
L}
[
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Exponential distribution

104 — A=1
= PDF — A=2
f(z) = Ae® forz >0,A>0 08
f(z) =0 otherwise
0.6
= CDF 5
Flz)=1—e® 5
0.4
= Some properties

EX] = [ zle dz = [-ze | + [ e *dr =1/
Var|X] = E[X?] — (E[X])* = 1/3* D-”% /

0
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Gumbel distribution (right-tailed)

104 — u=0, =1
= PDF — Jez g=1
()
f(z)=4e \° |
- CDF il
o N
F(x) =e"° 5 04l
= Some properties
0.2
EX|=p+y8  v~0577 .
VarX] = = R ——
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Fitting distribution functions
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Fitting distributions

= Given:
= An empirical distribution function

= A parametric distribution function
(e.g.: Gumbel)

= Which is the value of the parameters of
the distribution that best fits our data?

= Different methods: moments and MLE
here.

]
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How to choose the parametric
distribution function, next part of
the lecture!




Fitting distributions by moments

= Equate the moments of the observations to those of the distribution function

= Moments for the Gumbel distribution

EX]|=p+~vB8 =057 —7 Mean of the observations

2
Var|X| = %,82 - Variance of the observations

]
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Fitting distributions by moments - Example

= The intensity of earthquakes in Rome (Italy) Gumbel distribution:
IS a random process.

= Using ‘Catalogo dei terremoti italiani EX] = p+B 0T
dall'anno 1000 al 1980’ (the Catalog of Var[X] = 7’—2ﬁ2
ltalian earthquakes from year 1000 to 1980) ariil =
edited by D. Postpischl in 1985, we want to
fit a Gumbel distribution to the observations Equating them to the observations:

using the method of moments.
3.02 = p+0.5778

2
= Mean intensity = 3.02 0.99 = =5
= Variance of intensity = 0.99 Thus, u ~ 2.57 and B = 0.77.

]
TUDelft



Assessing the goodness of fit
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How do I choose a distribution?

= Physical constrains

= E.g. Do negative values have physical
meaning?

= Statistics of the observations

= Goodness of fit techniques
= Not a ground truth
= Objective way to compare models
= You may obtain contradictory results!

= As professionals, the choice is yours!

]
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EXAMPLE:
* Toy dataset

« Exponential or Gaussian?

0.06 1

0.05 4

0.04 4

pdf
PIX < x]

0.03 ~

0.02 4

0.01

0.00

1.0+

0.8 +

0.4

0.2 1

0.0 -

10

20

30




Graphical methods - QQplot

Measured against predicted values

= Fitted distribution: estimate the values of
the random variable with the observed
empirical probabilities

45 degree-line is the perfect fit

Simple

Fast to implement

Central moments + tail

]
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Theoretical quantiles

30
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20 -

15 1

10 1

@
o

N(5.17, 5.76)
Expon(-5.25, 10.42)

0

5 0 5 10 15
Empirical quantiles
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Graphical methods — log-scale

Exceedance probability plot (1-F(x))

How does the fitted distribution fit
the observations in log-scale?

Simple

Fast to implement

Focus on the tail: key element!

]
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PLX = x]

1.0

0.8 -

0.6 -

0.4

0.2

0.0 ~

— N(5.17, 5.76)
—— Expon(-5.25, 10.42)
® Observations

~10

109 4

— N(5.17, 5.76)
—— Expon(-5.25, 10.42)
@ Observations




Formal hypothesis tests — Kolmogorov-Smirnov

= Widely used nonparametric hypothesis Hypothesis tests:

test ' .
I Ho: null hypothesis

I H,: alternative hypothesis

I

| Statistic ~ distribution — p-value

= Two samples: same population? I

I p-value: probability of the null hypothesis being
I true

I

I Significance (typically a = 0.05)

I

I'If p-value> a: We accept HO

: If p-value< a: We reject HO

= Two variants:

= One sample: GOF to a distribution

]
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Formal hypothesis tests — Kolmogorov-Smirnov

One sample: GOF to a distribution

= Based on the KS statistic: (roughly) the
maximum distance between the ECDF
and the fitted CDF

m HO:FNF

= P-value > a = 0.05 — | cannot reject
that the observations follow the
distribution

]
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P[X = x]

Maximum distancel

D,, = sup,|F(z) — F(z)|

10 15 20 25 30
x




Formal hypothesis tests — Kolmogorov-Smirnov

= Hj: E' ~ Normal distribution

= P-value = 0.93

= P-value =0.93 > «a = 0.05 — | cannot
reject that the observations follow a
Normal distribution

]
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P[X = x]

Maximum distancel

D,, = sup,|F(z) — F(z)|

5 10 15 20 25 30



What's next?

= There is more In the textbook!

= 5.5 Parameterization of continuous
distributions

= Wednesday workshop: concrete
compressive strength

= Friday project: your choice!
= Traffic and CO, emissions
= \Waves and impacts

= Velocities, depths and discharges

]
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5.5. Parameterization of continuous
distributions

In the previous sections, you have studied different parametric distributions that can be applied to model the
univariate uncertainty in our data. Those distributions were characterized by a set of parameters (e.g.: A for
Exponential distribution). Those parameters can be fitted to model real-world data as accurately as possible
and, thus, use the distribution for predicting future events. Along the sections devoted to present a selection
of distribution functions, the equations for the PDF and CDF as you can usually find them in text books were
presented. However, they are just equations! That means that we can play with them and parameterize the
distribution the way that fits best to our purposes.

In this section the parameterization loc-scale-shape will be addressed in the context of scipy Python
package. This parameterization is very convenient due to the consistency it provides (all distributions with
the same parameters), the ease of the interpretation of those parameters and the advantages of their
implementation in computer code. That is why scipy package (between others) uses this parameterization
for continuous distribution functions.

Definition of location, scale and shape #

The location () parameter shifts the distribution along the x-axis without changing its shape. The scale
parameter (() determines the width of the distribution. Finally, the shape parameter (£) is any extra
parameter (if any) in the distribution function which is not i or 8 and describes the form of the distribution.
Let's see it better with a couple of examples!

You have already been introduced to the (right-tailed) Gumbel distribution, whose PDF is given by

1 o ( = +e_(%))

f($)=E



And enjoy the journey!
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