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Welcome to...



Week 1.4 Announcements

▪ Assignment Portfolio: Deadlines and Points (reminder)

▪ Group Assignments: submit each Friday at 12:30; feedback returned middle of following week

▪ BuddyCheck (finish by 11:00 Monday – they are now worth points!). No late submissions allowed.

▪ PA: best to finish before Friday each week; ultimate deadline for points is Week 1.9, Monday (Oct 28)

▪ Solutions from last week online; also, a widget to explore model parameters, see14

▪ .../files/GA_1_3/

▪ Programming Tutorials Continue: Monday at 10:45, Room 1.98 (focus is on basics programming skills)

▪ PA1.4: access link on MUDE Files page: .../files/Week_1_4/README.html

Note: if you are downloading or transcribing individual pages 

of the book, get in touch---we can help save you time!!!
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Miss taking notes in a textbook? Make the book “yours” with Hypothesis Browser Extension:

https://web.hypothes.is/start/ (→ later this year we will provide you a way to “save” your notes/book)

https://web.hypothes.is/start/


Review
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Estimators - overview

▪ Weighted Least-Squares estimation : minimizing weighted sum of squared errors

allows to give different weights to observations

▪ Best Linear Unbiased estimation : (best),                          (linear),                        (unbiased)

▪ Maximum Likelihood estimation : most likely x for given y, 

for normally distributed data same as BLUE

Functional model:

Stochastic model:
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Results from notebooks

▪ Underfitting: model too simplistic, does not capture the real signal

▪ Overfitting: nearly perfect fit, but no physical interpretation
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Results from notebooks

▪ Underfitting: model too simplistic, does not capture the real signal

▪ Overfitting: nearly perfect fit, but no physical interpretation→ very risky if you use model for
prediction
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Best linear unbiased estimator = best weighted least squares 
estimator
Weight matrix is inverse covariance matrix:

Makes sense: high precision → small variance → large weight
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Question that may have popped up:
Where does 𝜮𝒀 come from?

→Calibration:

➢ Repeated measurements

➢ Calculate standard deviation

Usually observables are assumed to be independent, since the random errors are independent 
(error of observation 𝑌𝑖 does not depend on the error of observation 𝑌𝑗

When would observable be dependent?

- due to signal processing in sensor (often when sampling rate is too high)

- if we use differential observables

- if we apply a common correction to our observations which is stochastic
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Open questions

▪ (How to come up with a model?)

▪ What if my model is non-linear?

▪ Does my model really fit?

▪ Which models fits best?
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What if my observation equations are non-linear? 
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Observed: ground water level rise due to rainfal

➢ Known parameter:

➢ 𝑝 [m]: constant water inflow during rain event

➢ Unknown parameters: 

➢ scaling parameter 𝒂 [days] (memory of system), 

➢ response 𝒓 [m/m] of the aquifer depending on the amount of rainfall

𝑟

𝑡

𝑠(
𝑡
−
𝑡 0
)
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Volcano deformation rates at known locations (𝒙𝒊, 𝒚𝒊) 

Unknown parameters: volume change ∆𝑽, depth of magma chamber 𝒅,

(𝒙𝒔, 𝒚𝒔) horizontal coordinates of centre 
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Linearized observation equation using 1st order Taylor approximation 
1 observation 1 unknown

initial guess

for now: omit 𝜖 from equations

observed-minus-

computed
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Input: 

- observation 𝑦
- initial guess 𝑥[0]

observed

forward model

initial guess

slope of tangent
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Input: 

- observation 𝑦
- initial guess 𝑥[0]

new guess

observed

forward model

initial guess

slope of tangent
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Input: 

- observation 𝑦
- new guess 𝑥[1]

→ Gauss-Newton iteration

Continue until ∆𝑥[𝑖] is very small

new guess

observed
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Linearized observation equation using 1st order Taylor approximation 
1 observation 𝑛 unknowns

𝑖 is the iteration index

17



Non-linear functional model

Linearized functional model

Jacobian  takes the role of design matrix Α
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Start with initial guess x[0], and start iteration with 𝑖 = 0

1. Calculate observed-minus-computed ∆y[𝑖]

2. Determine the Jacobian

3. Estimate ∆ොx[𝑖] by applying BLUE

4. New guess x[𝑖+1] = ∆ොx[𝑖]+ x[𝑖]

Gauss-Newton iteration

Jacobian  takes the role of design matrix Α
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Convergence
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Start with initial guess x[0], and start iteration with 𝑖 = 0

1. Calculate observed-minus-computed ∆y[𝑖]

2. Determine the Jacobian

3. Estimate ∆ොx[𝑖] by applying BLUE

4. New guess x[𝑖+1] = ∆ොx[𝑖]+ x[𝑖]

Gauss-Newton iteration

Jacobian  takes the role of design matrix Α
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Stop criterion

small value

Start with initial guess x[0], and start iteration with 𝑖 = 0

1. Calculate observed-minus-computed ∆y[𝑖]

2. Determine the Jacobian

3. Estimate ∆ොx[𝑖] by applying BLUE

4. New guess x[𝑖+1] = ∆ොx[𝑖]+ x[𝑖]

5. If stop criterion is met: set ොx = x[𝑖+1] and break, otherwise set 𝑖: = 𝑖 + 1 and go to step 1

Gauss-Newton iteration

Jacobian  takes the role of design matrix Α

an estimated parameter with small 

variance should have a relatively 

small deviation compared to a 

parameter with large variance
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Volcano deformation rates at known locations (𝒙𝒊, 𝒚𝒊) 

Unknown parameters: volume change ∆𝑽, depth of magma chamber 𝒅,

(𝒙𝒔, 𝒚𝒔) horizontal coordinates of centre 
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Volcano deformation – precision of estimated parameters

observed deformations at (𝒙𝒊, 𝒚𝒊) as function of volume change, depth, horiz. position of centre

seems large, but look at 

units, and look at size 

compared to estimate !
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Is it a good fit?
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Sensing and observation theory - why

Needed for monitoring and prediction
e.g., natural processes, human-induced deformations, structural health, climate & environment, geo-
energy and geo-resources, …

➢ Process measurements (= observations) to estimate parameters of interest

➢ In order to use estimation results for further analysis and interpretations (eventually to make 
decisions)

= uncertainty quantification

= detection of errors in data (outliers, systematic biases)

+ correction / adaption for these errors

= model validation

• detect model misspecifications

• multiple candidate models → decide which one is best
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Example: outlier
h
e
ig

h
t

time

1 outlier may have large impact 

on estimated height

affected by outlier

not affected by outlier
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Example: model misspecification
h
e
ig

h
t

location

Wrong model → large residuals

(difference observations and fitted model)

h
e
ig

h
t

location
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Statistical hypothesis testing

→test for compliance of model and data

Two competing hypothesis:

- Null hypothesis (nominal model):

- Alternative hypothesis:

Null hypothesis presumed to be ‘true’
until data provide convincing evidence against it

equivalent to:
“ the defendant is presumed to be innocent until proven guilty ”
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Project: Road deformation 

Apply non-linear least-squares

How to decide between the two models?
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Enjoy…
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