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Sensing and Observation
Theory

part 2




Week 1.4 Announcements

= Assignment Portfolio: Deadlines and Points (reminder)

= Group Assignments: submit each Friday at 12:30; feedback returned middle of following week

= BuddyCheck (finish by 11:00 Monday — they are now worth points!). No late submissions allowed.

= PA: best to finish before Friday each week; ultimate deadline for points is Week 1.9, Monday (Oct 28)
= Solutions from last week online; also, a widget to explore model parameters, seel4
- .../files/GA 1 3/

= Programming Tutorials Continue: Monday at 10:45, Room 1.98 (focus is on basics programming skills)

= PAL1.4: access link on MUDE Files page: .../files/Week 1 4/README.html

Miss taking notes in a textbook? Make the book “yours” with Hypothesis Browser Extension:

https://web.hypothes.is/start/ (—=> later this year we will provide you a way to “save” your notes/book)
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As in other physical sciences, empirical data are used in Civil and Environmental Engineering and Applied Earth y %
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of the book, get in touch---we can help save you time!!! Modeling, Uncertainty, and ata for Engineers

ductior



https://web.hypothes.is/start/
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Functional model: E(Y) = A - x

Estimators - overview Stochastic model: D(Y") = Xy
- J

Weighted Least-Squares estimation : minimizing weighted sum of squared errors

allows to give different weights to observations
X =(ATWA)ATW .Y
Best Linear Unbiased estimation :min (trace(EX)) (best), X =LT .Y (linear), ]E(X) = x (unbiased)

A -1
X = (A", A) TATESY
Maximum Likelihood estimation : most likely x for given vy,

for normally distributed data same as BLUE
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Results from notebooks

= Underfitting: model too simplistic, does not capture the real signal

= Qverfitting: nearly perfect fit, but no physical interpretation
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Results from notebooks

= Underfitting: model too simplistic, does not capture the real signal
= Qverfitting: nearly perfect fit, but no physical interpretation = very risky if you use model for
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Best linear unbiased estimator = best weighted least squares

estimator
Weight matrix Is inverse covariance matrix:

Makes sense: high precision - small variance - large weight
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/Y = A -x+¢€
Question that may have popped up: DY) =3y = %,
o

Where does Xy come from?
—> Calibration:

» Repeated measurements

» Calculate standard deviation

Usually observables are assumed to be indeﬁendent, since the random errors are independent
(error of observation Y; does not depend on the error of observation Y;

When would observable be dependent?

- due to signal processing in sensor (often when sampling rate is too high)
- 1f we use differential observables

- 1If we apply a common correction to our observations which is stochastic
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Open questions

= (How to come up with a model?)
= What if my model is non-linear?
= Does my model really fit?

= Which models fits best?
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What if my observation equations are non-linear?
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Observed: ground water level rise due to rainfal

t—1
E(Y)=p-r(1—exp (-2

a
.
'
S(t—to)
» Known parameter: S 4
» p [m]: constant water inflow during rain event L r

-/

> Unknown parameters: ‘

» scaling parameter a [days] (memory of system),

» response r [m/m] of the aquifer depending on the amount of rainfall
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Volcano deformation rates at known locations (x;, y;)

E(Y;) =

Unknown parameters:
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Linearized observation equation using Ist order Taylor approximation
1 observation 1 unknown

y = q(z)+e = q(z))) + 0zq(z[0))(z — z[])+¢
for now: omit € from equations

initial guess

Ay =y —q(zj0) = 0zq(z[)(x — (o))
A

observed-minus-
computed
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Input:
- Observation y
- Initial guess x|

A’!J[O] =Y — (J(J»'[O]) ~ 3:::(](115'[0])(3;[1] — 517[0])

\ - >,

Y i

Aﬂ?[o]
slope of tangent

q(zpo])
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Input:
- Observation y
- Initial guess x|

A’!J[O] =Y — (J(J»'[O]) ~ 3:::(](33[0])(37[1] — 517[0])

\ - >,

Y i

ASC[()]
slope of tangent

q(zpo])
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Input:
- Observation y
- NEW gUESS X|q;

Ay =y — q(zp)) =~ 3mQ($[1])£$[2] — 33[1]2

Y

A&'}[l]

- Gauss-Newton iteration

Continue until Ax;; is very small

T el
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Linearized observation equation using 1st order Taylor approximation
1 observation n unknowns

Ay =y — q(xp)) = 0xq(xp)) (X — x751)
N——r’

n X1

AX[?;]
-371 — ml,[z]-
L2 — X2 [q]
= [0z, q(xp1)  Onpa(xp) -+ Omnq(xp)] .
| Tn — L, [4]_

[ IS the iteration index
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Non-linear functional model
Y7 ] q1(x) |
E( Yz ) q2(x)
Y:m_ _Qm.(X)_

Linearized functional model

(AY] | Oy 1 (X)) Ono@1 (X)) o+ Ow,qu(xp) | [Am
E( AY; ) Oz, @2(Xp)  OzaG2(Xp)  +++ 02,G2(X) | | Aze
|AYr, | [4] 0z, qm (X[i]) Oz, qm (X[i]) oo Oz, Qm (X[i])_ Az, (4]
4 \ Y J
TUDelft

Jacobian < takes the role of design matrix A



Gauss-Newton 1teration

Start with initial guess xpo;, and start iteration with i = 0
1. Calculate observed-minus-computed Ayy;;

2. Determine the Jacobian
3. Estimate AXy;; by applylng BLUE
4

WHEN TO STOP?

. New guess x|, 1] =

AY) ] Or, q1(Xpi)  Ozoq1(Xpiy) -+ Om,qu(xp) | [Amy
E( AY; ) Oz, q2(Xpi)  Oz,@2(xpi)  -++ Oz, q2(xp) | | A2
AYm_ [4] Oy 4 (X[i])  Owytm(Xpi)) -+ Oz, Gm(Xpy)] [Azn] (i
4 \ Y J
TUDelft
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Convergence
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Gauss-Newton 1teration

Start with initial guess xpo;, and start iteration with i = 0
1. Calculate observed-minus-computed Ayy;;

2. Determine the Jacobian
3. Estimate AXy;; by applylng BLUE
4

WHEN TO STOP?

. New guess x|, 1] =

AY) ] Or, q1(Xpi)  Ozoq1(Xpiy) -+ Om,qu(xp) | [Amy
E( AY; ) Oz, q2(Xpi)  Oz,@2(xpi)  -++ Oz, q2(xp) | | A2
AYm_ [4] Oy 4 (X[i])  Owytm(Xpi)) -+ Oz, Gm(Xpy)] [Azn] (i
4 \ Y J
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Jacobian < takes the role of design matrix A



Gauss-Newton 1teration

Start with initial guess xj

I and start iteration with i = 0

1. Calculate observed-minus-computed Ayy;;

a & WD

E(
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New guess X1

AY;

AYn,

Determine the Jacobian

[4]

Estimate AXy;; by applying BLUE
= AXpp+ X

O, q1 (X)) Oz, q1(Xp3))
3xIQ2(X[@']) 3@612(?([@'])

O, qm (X[3) Oy Gm(X[3))
\

Stop criterion

AX[Z]

: A}'Ez[z-] < small value

an estimated parameter with small
variance should have a relatively
small deviation compared to a
parameter with large variance

Oz, q1 (X[z']) |

Oz, dm (X[i])

J

|

ACCl
Ail?g

Az,

If stop criterion Is met: set X = xp; 417 and break, otherwise set i:= i+ 1 and go to step 1
FAY

[¢]

Jacobian < takes the role of design matrix A



Inflation Deflation
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Volcano deformation — precision of estimated parameters

observed deformations at (x;, y;) as function of volume change, depth, horiz. position of centre

E(Y) = SO0V (14 (i — ) + (4~ 92)?)
AV]  [-552352.169 m3”

d | | 3562319 m

s | 27528.535 m
gs | | 23540619 m
_ - _ _ seems large, but look at

N 1582.769 m? units, and look at size

o; | _ 8.9806 m compared to estimate !

Oz, 8.238 m
0y, | - 7.239m
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Is it a good fit?
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Sensing and observation theory - why

Needed for monitoring and prediction

e.g., natural processes, human-induced deformations, structural health, climate & environment, geo-
energy and geo-resources, ...

» Process measurements (= observations) to estimate parameters of interest

» In order to use estimation results for further analysis and interpretations (eventually to make
decisions)

= uncertainty quantification

= detection of errors in data (outliers, systematic biases)
+ correction / adaption for these errors

= model validation
~ » detect model misspecifications
TU De|ft « multiple candidate models - decide which one is best



Example: outlier

1 outlier may have large impact
on estimated height

height

x . «__affected by outlier
X = —x x ot affected by outlier

v

%
TUDelft



Example: model misspecification

Wrong model - large residuals
(difference observations and fitted model)

height

location

TU Delft

height

location



Statistical hypothesis testing

—>test for compliance of model and data

Two competing hypothesis:
- Null hypothesis (nominal model): HO
- Alternative hypothesis: Ha,

Null hypothesis presumed to be ‘true’
until data provide convincing evidence against it

equivalent to:
“ the defendant is presumed to be innocent until proven guilty ”
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Project: Road deformation

L(Y;) = do

R (1 —exp

(Y;) =do +vt; + k GW

a

)

kE GW

Apply non-linear least-squares

How to decide between the two models?
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Enjoy...
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