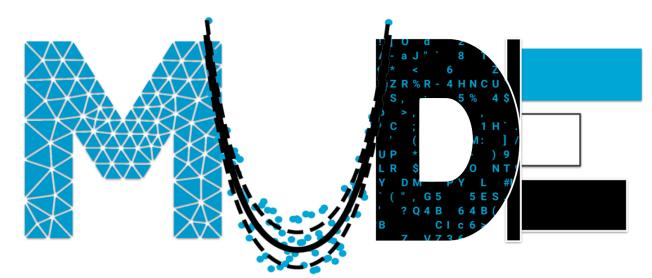
Welcome to...



Modelling, Uncertainty, and Data for Engineers

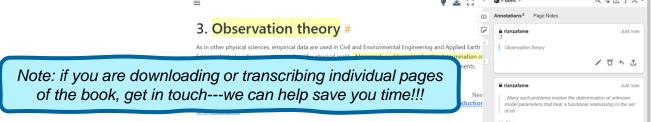
Sensing and Observation Theory part 2

Week 1.4 Announcements

- Assignment Portfolio: Deadlines and Points (reminder)
 - Group Assignments: submit each Friday at 12:30; feedback returned middle of following week
 - BuddyCheck (finish by 11:00 Monday they are now worth points!). No late submissions allowed.
 - PA: best to finish before Friday each week; ultimate deadline for points is Week 1.9, Monday (Oct 28)
- Solutions from last week online; also, a widget to explore model parameters, see 14
- .../files/**GA** 1 3/
- Programming Tutorials Continue: Monday at 10:45, Room 1.98 (focus is on basics programming skills)
- PA1.4: access link on MUDE Files page: .../files/Week_1_4/README.html

Miss taking notes in a textbook? Make the book "yours" with Hypothesis Browser Extension:

<u>https://web.hypothes.is/start/</u>
(→ later this year we will provide you a way to "save" your notes/book)



Review

Estimators - overview

Functional model: $\mathbb{E}(Y) = \mathrm{A} \cdot \mathrm{x}$

Stochastic model: $\mathbb{D}(Y) = \Sigma_Y$

Weighted Least-Squares estimation: minimizing weighted sum of squared errors
 allows to give different weights to observations

$$\hat{X} = (\mathbf{A}^T \mathbf{W} \mathbf{A})^{-1} \mathbf{A}^T \mathbf{W} \cdot Y$$

• Best Linear Unbiased estimation : $\min\left(trace(\Sigma_{\hat{X}})\right)$ (best), $\hat{X}=\mathrm{L}^T\cdot Y$ (linear), $\mathbb{E}(\hat{X})=\mathrm{x}$ (unbiased)

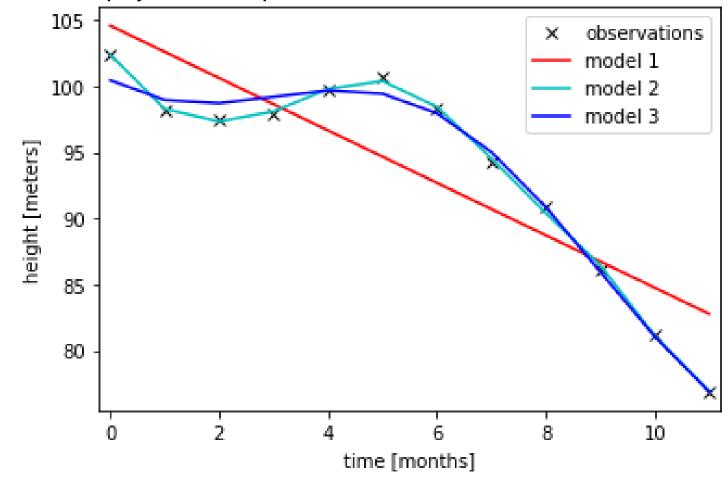
$$\hat{X} = \left(\mathbf{A}^T \Sigma_Y^{-1} \mathbf{A}\right)^{-1} \mathbf{A}^T \Sigma_Y^{-1} Y$$

Maximum Likelihood estimation : most likely x for given y,

for normally distributed data same as BLUE

Results from notebooks

- Underfitting: model too simplistic, does not capture the real signal
- Overfitting: nearly perfect fit, but no physical interpretation

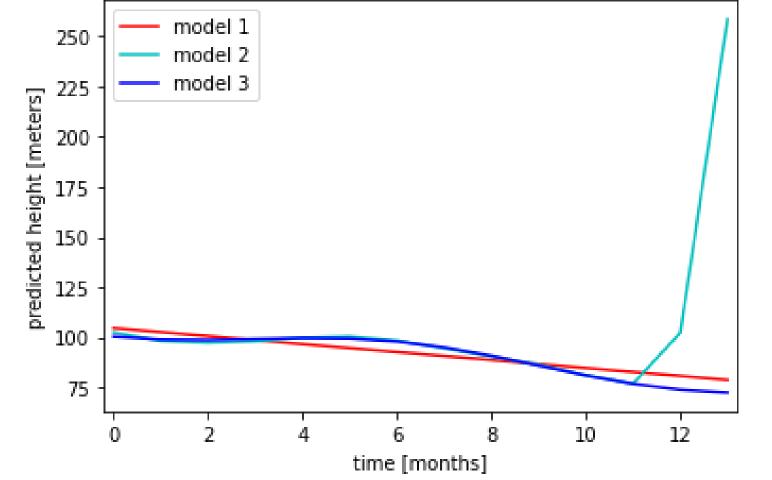


Results from notebooks

Underfitting: model too simplistic, does not capture the real signal

Overfitting: nearly perfect fit, but no physical interpretation → very risky if you use model for

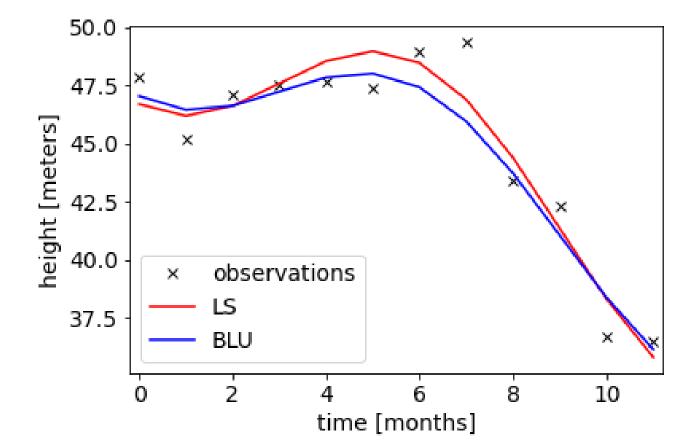
prediction



Best linear unbiased estimator = best weighted least squares estimator

Weight matrix is inverse covariance matrix:

Makes sense: high precision → small variance → large weight



.

$$Y = A \cdot x + \epsilon$$

$$\mathbb{D}(Y) = \Sigma_Y = \Sigma_{\epsilon}$$

Question that may have popped up:

Where does Σ_Y come from?

- → Calibration:
 - Repeated measurements
 - Calculate standard deviation

Usually observables are assumed to be independent, since the random errors are independent (error of observation Y_i does not depend on the error of observation Y_j

When would observable be dependent?

- due to signal processing in sensor (often when sampling rate is too high)
- if we use *differential* observables
- if we apply a common correction to our observations which is stochastic

Open questions

- (How to come up with a model?)
- What if my model is non-linear?
- Does my model really fit?
- Which models fits best?

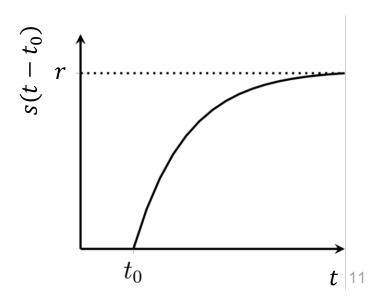
What if my observation equations are non-linear?

Observed: ground water level rise due to rainfal

$$E(Y_i) = p \cdot r \left(1 - \exp\left(-\frac{t - t_0}{a}\right) \right)$$

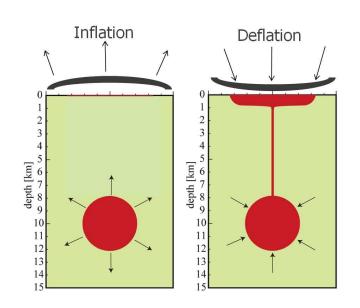
$$s(t - t_0)$$

- Known parameter:
 - > p [m]: constant water inflow during rain event
- Unknown parameters:
 - \triangleright scaling parameter a [days] (memory of system),
 - \triangleright response r [m/m] of the aquifer depending on the amount of rainfall

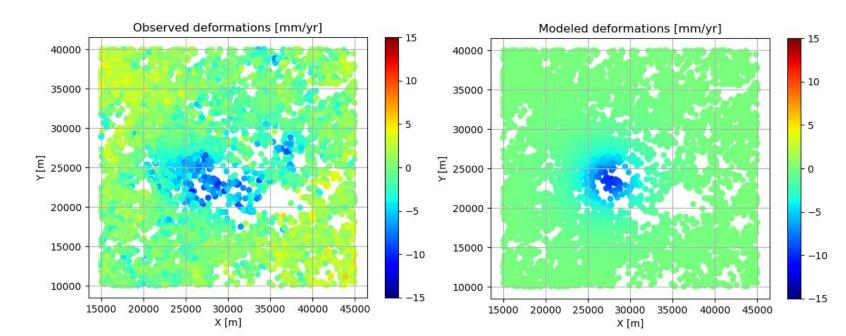


Volcano deformation rates at known locations (x_i, y_i)

$$\mathbb{E}(Y_i) = \frac{0.73\Delta V}{\pi d^2} \cdot (1 + \frac{1}{d^2}((x_i - x_s)^2 + (y_i - y_s)^2))^{-\frac{3}{2}}$$



Unknown parameters: volume change ΔV , depth of magma chamber d, (x_s, y_s) horizontal coordinates of centre



Linearized observation equation using 1st order Taylor approximation 1 observation 1 unknown

$$y = q(x) + \epsilon \approx q(x_{[0]}) + \partial_x q(x_{[0]})(x - x_{[0]}) + \epsilon$$

for now: omit ϵ from equations

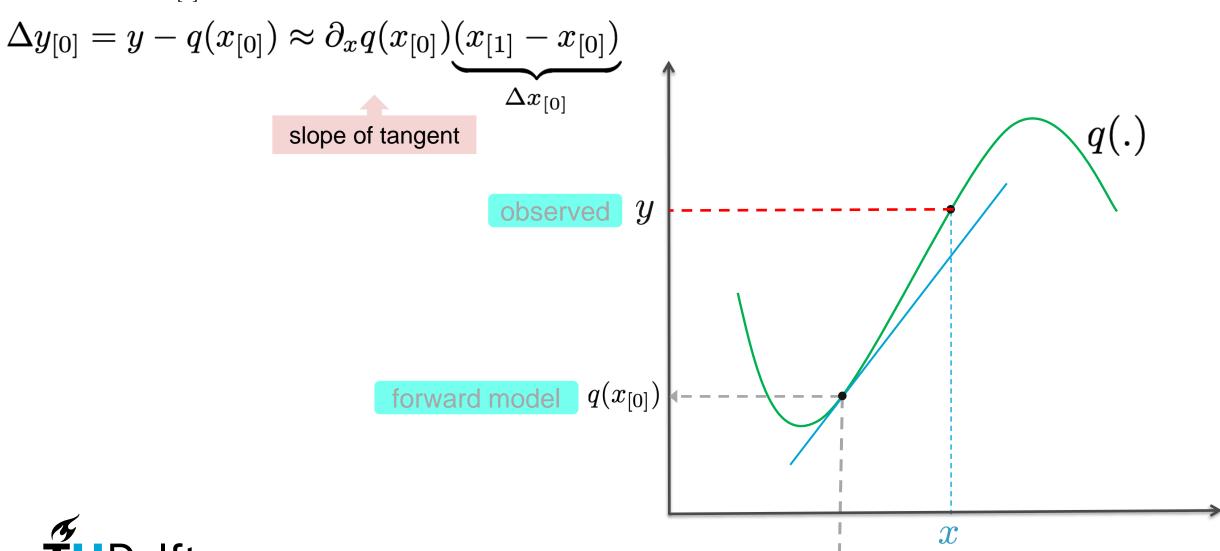
initial guess

$$\Delta y = y - q(x_{[0]}) \approx \partial_x q(x_{[0]}) \underbrace{(x - x_{[0]})}_{\Delta x}$$

observed-minuscomputed

Input:

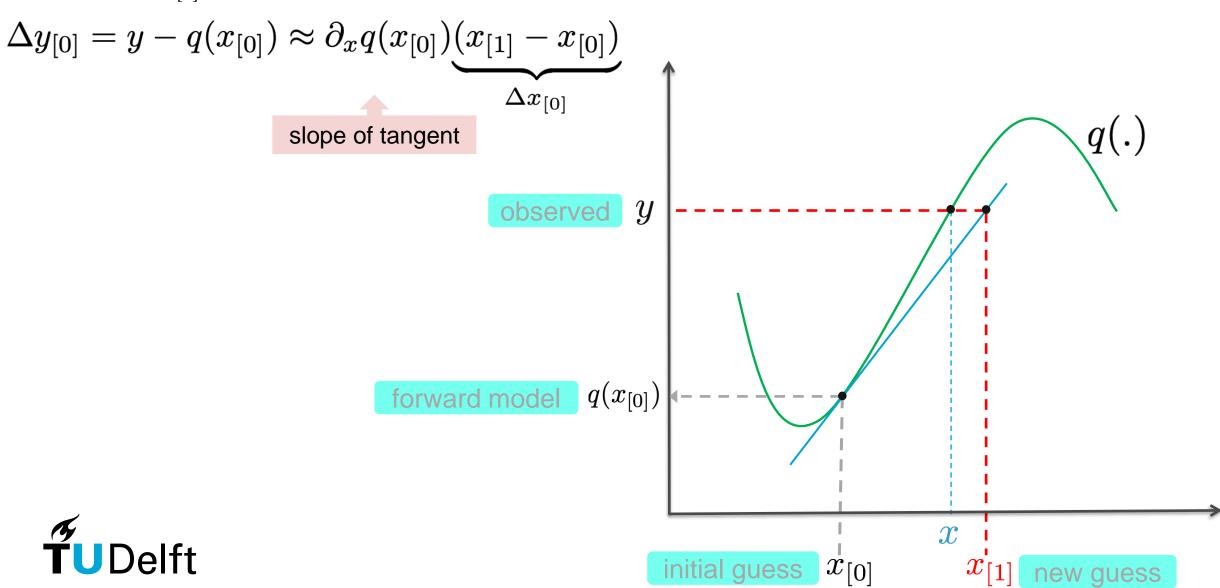
- observation *y*
- initial guess $x_{[0]}$



initial guess

Input:

- observation *y*
- initial guess $x_{[0]}$



new guess

Input:

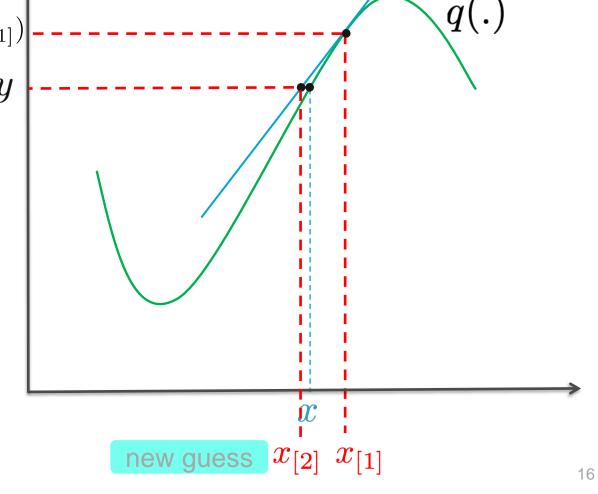
- observation *y*
- new guess $x_{[1]}$

$$\Delta y_{[1]} = y - q(x_{[1]}) \approx \partial_x q(x_{[1]}) \underbrace{(x_{[2]} - x_{[1]})}_{}$$

 $\Delta x_{[1]}$ $q(x_{[1]})$ observed y

→ Gauss-Newton iteration

Continue until $\Delta x_{[i]}$ is very small



Linearized observation equation using 1st order Taylor approximation 1 observation n unknowns

$$\Delta y_{[i]} = y - q(\mathbf{x}_{[i]}) \approx \partial_{\mathbf{x}} q(\mathbf{x}_{[i]}) \underbrace{(\mathbf{x} - \mathbf{x}_{[i]})}_{\Delta \mathbf{x}_{[i]}}$$

$$=egin{bmatrix} \partial_{x_1}q(\mathbf{x}_{[i]}) & \partial_{x_2}q(\mathbf{x}_{[i]}) & \cdots & \partial_{x_n}q(\mathbf{x}_{[i]}) \end{bmatrix} egin{bmatrix} x_1-x_{1,[i]} \ x_2-x_{2,[i]} \ dots \ x_n-x_{n,[i]} \end{bmatrix}$$

i is the iteration index

Non-linear functional model

$$\mathbb{E}(egin{bmatrix} Y_1 \ Y_2 \ dots \ Y_m \end{bmatrix}) = egin{bmatrix} q_1(\mathbf{x}) \ q_2(\mathbf{x}) \ dots \ q_m(\mathbf{x}) \end{bmatrix}$$

Linearized functional model

$$\mathbb{E}\begin{pmatrix}\begin{bmatrix}\Delta Y_1\\\Delta Y_2\\\vdots\\\Delta Y_m\end{bmatrix}_{[i]} \end{pmatrix} = \begin{bmatrix} \partial_{x_1}q_1(\mathbf{x}_{[i]}) & \partial_{x_2}q_1(\mathbf{x}_{[i]}) & \cdots & \partial_{x_n}q_1(\mathbf{x}_{[i]})\\\partial_{x_1}q_2(\mathbf{x}_{[i]}) & \partial_{x_2}q_2(\mathbf{x}_{[i]}) & \cdots & \partial_{x_n}q_2(\mathbf{x}_{[i]})\\\vdots\\\vdots\\\partial_{x_1}q_m(\mathbf{x}_{[i]}) & \partial_{x_2}q_m(\mathbf{x}_{[i]}) & \cdots & \partial_{x_n}q_m(\mathbf{x}_{[i]}) \end{bmatrix} \begin{bmatrix} \Delta x_1\\\Delta x_2\\\vdots\\\Delta x_n\end{bmatrix}_{[i]}$$

Gauss-Newton iteration

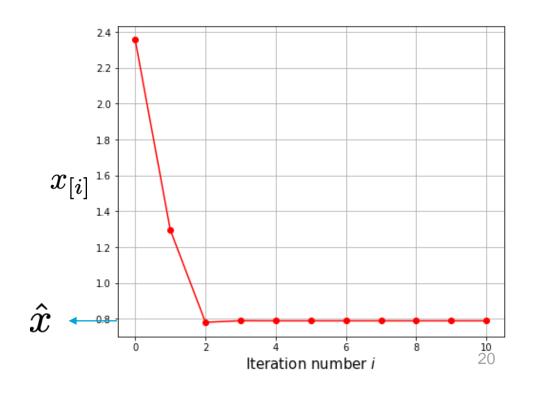
Start with initial guess $x_{[0]}$, and start iteration with i = 0

- 1. Calculate observed-minus-computed $\Delta y_{[i]}$
- 2. Determine the Jacobian
- 3. Estimate $\Delta \hat{\mathbf{x}}_{[i]}$ by applying BLUE
- 4. New guess $x_{[i+1]} = \Delta \hat{x}_{[i]} + x_{[i]}$

WHEN TO STOP?

$$\mathbb{E}\begin{pmatrix}\begin{bmatrix} \Delta Y_1 \\ \Delta Y_2 \\ \vdots \\ \Delta Y_m \end{bmatrix}_{[i]} \end{pmatrix} = \begin{bmatrix} \partial_{x_1} q_1(\mathbf{x}_{[i]}) & \partial_{x_2} q_1(\mathbf{x}_{[i]}) & \cdots & \partial_{x_n} q_1(\mathbf{x}_{[i]}) \\ \partial_{x_1} q_2(\mathbf{x}_{[i]}) & \partial_{x_2} q_2(\mathbf{x}_{[i]}) & \cdots & \partial_{x_n} q_2(\mathbf{x}_{[i]}) \\ \vdots & \vdots & & \vdots \\ \partial_{x_1} q_m(\mathbf{x}_{[i]}) & \partial_{x_2} q_m(\mathbf{x}_{[i]}) & \cdots & \partial_{x_n} q_m(\mathbf{x}_{[i]}) \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \vdots \\ \Delta x_n \end{bmatrix}_{[i]}$$

Convergence



Gauss-Newton iteration

Start with initial guess $x_{[0]}$, and start iteration with i = 0

- 1. Calculate observed-minus-computed $\Delta y_{[i]}$
- 2. Determine the Jacobian
- 3. Estimate $\Delta \hat{\mathbf{x}}_{[i]}$ by applying BLUE
- 4. New guess $x_{[i+1]} = \Delta \hat{x}_{[i]} + x_{[i]}$

WHEN TO STOP?

$$\mathbb{E}\begin{pmatrix}\begin{bmatrix}\Delta Y_1\\\Delta Y_2\\\vdots\\\Delta Y_m\end{bmatrix}\end{pmatrix} = \begin{bmatrix}\partial_{x_1}q_1(\mathbf{x}_{[i]}) & \partial_{x_2}q_1(\mathbf{x}_{[i]}) & \cdots & \partial_{x_n}q_1(\mathbf{x}_{[i]})\\\partial_{x_1}q_2(\mathbf{x}_{[i]}) & \partial_{x_2}q_2(\mathbf{x}_{[i]}) & \cdots & \partial_{x_n}q_2(\mathbf{x}_{[i]})\\\vdots & \vdots & & \vdots\\\partial_{x_1}q_m(\mathbf{x}_{[i]}) & \partial_{x_2}q_m(\mathbf{x}_{[i]}) & \cdots & \partial_{x_n}q_m(\mathbf{x}_{[i]})\end{bmatrix} \begin{bmatrix}\Delta x_1\\\Delta x_2\\\vdots\\\Delta x_n\end{bmatrix}_{[i]}$$

Gauss-Newton iteration

Start with initial guess $x_{[0]}$, and start iteration with i = 0

- 1. Calculate observed-minus-computed $\Delta y_{[i]}$
- 2. Determine the Jacobian
- 3. Estimate $\Delta \hat{\mathbf{x}}_{[i]}$ by applying BLUE
- 4. New guess $x_{[i+1]} = \Delta \hat{x}_{[i]} + x_{[i]}$
- 5. If stop criterion is met: set $\hat{x} = x_{[i+1]}$ and break, otherwise set i := i+1 and go to step 1

$$\mathbb{E}\begin{pmatrix}\begin{bmatrix}\Delta Y_1\\\Delta Y_2\\\vdots\\\Delta Y_m\end{bmatrix}_{[i]}) = \begin{bmatrix}\partial_{x_1}q_1(\mathbf{x}_{[i]}) & \partial_{x_2}q_1(\mathbf{x}_{[i]}) & \cdots & \partial_{x_n}q_1(\mathbf{x}_{[i]})\\\partial_{x_1}q_2(\mathbf{x}_{[i]}) & \partial_{x_2}q_2(\mathbf{x}_{[i]}) & \cdots & \partial_{x_n}q_2(\mathbf{x}_{[i]})\\\vdots & \vdots & & \vdots\\\partial_{x_1}q_m(\mathbf{x}_{[i]}) & \partial_{x_2}q_m(\mathbf{x}_{[i]}) & \cdots & \partial_{x_n}q_m(\mathbf{x}_{[i]})\end{bmatrix} \begin{bmatrix}\Delta x_1\\\Delta x_2\\\vdots\\\Delta x_n\end{bmatrix}_{[i]}$$

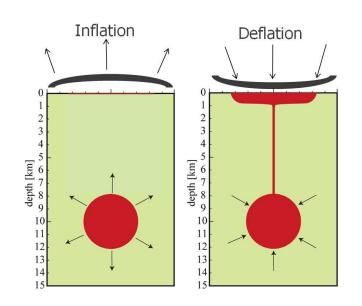
Stop criterion

$$\Delta \hat{\mathbf{x}}_{[i]}^T \cdot \Sigma_{\hat{\mathbf{x}}}^{-1} \cdot \Delta \hat{\mathbf{x}}_{[i]} < \text{small value}$$

an estimated parameter with small variance should have a relatively small deviation compared to a parameter with large variance

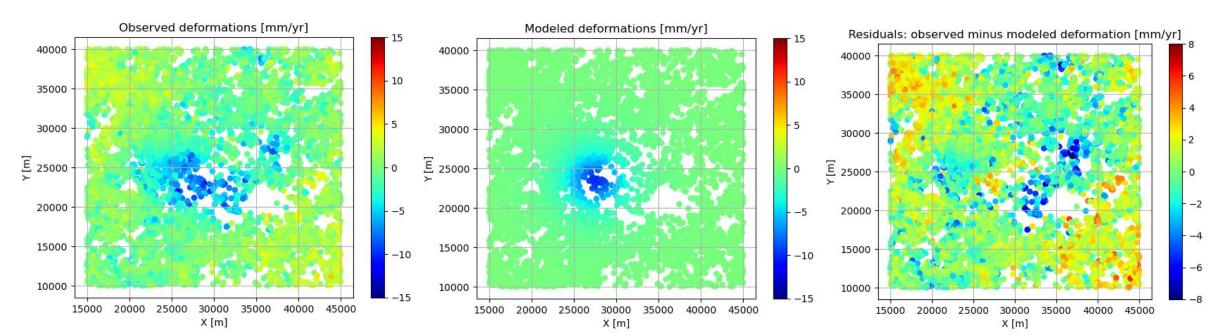
Volcano deformation rates at known locations (x_i, y_i)

$$\mathbb{E}(Y_i) = \frac{0.73\Delta V}{\pi d^2} \cdot (1 + \frac{1}{d^2}((x_i - x_s)^2 + (y_i - y_s)^2))^{-\frac{3}{2}}$$



Unknown parameters: volume change ΔV , depth of magma chamber d,

 (x_s, y_s) horizontal coordinates of centre



Volcano deformation – precision of estimated parameters

observed deformations at (x_i, y_i) as function of volume change, depth, horiz. position of centre

$$\mathbb{E}(Y_i) = \frac{0.73\Delta V}{\pi d^2} \cdot \left(1 + \frac{1}{d^2} \left((x_i - x_s)^2 + (y_i - y_s)^2 \right) \right)^{-\frac{3}{2}}$$

$$\begin{bmatrix} \hat{\Delta V} \\ \hat{d} \\ \hat{x}_s \\ \hat{y}_s \end{bmatrix} = \begin{bmatrix} -552352.169 \ m^3 \\ 3562.319 \ m \\ 27528.535 \ m \\ 23540.619 \ m \end{bmatrix}$$

$$\begin{bmatrix} \sigma_{\hat{\Delta V}} \\ \sigma_{\hat{d}} \\ \sigma_{\hat{x}_s} \\ \sigma_{\hat{y}_s} \end{bmatrix} = \begin{bmatrix} 1582.769 \ m^3 \\ 8.986 \ m \\ 8.238 \ m \\ 7.239 \ m \end{bmatrix}$$

seems large, but look at units, and look at size compared to estimate!

Is it a good fit?

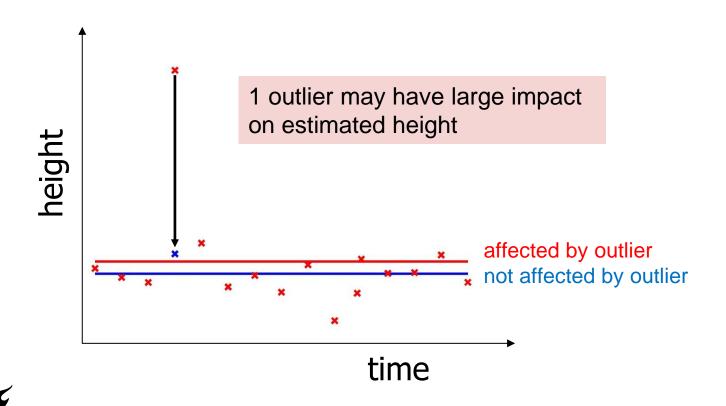
Sensing and observation theory - why

Needed for monitoring and prediction

e.g., natural processes, human-induced deformations, structural health, climate & environment, geo-energy and geo-resources, ...

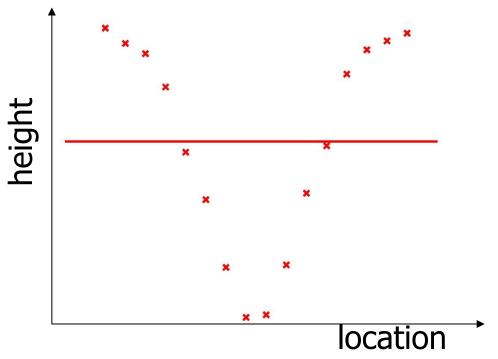
- Process measurements (= observations) to estimate parameters of interest
- In order to use estimation results for further analysis and interpretations (eventually to make decisions)
 - = uncertainty quantification
 - = detection of errors in data (outliers, systematic biases)
 - + correction / adaption for these errors
 - = model validation
 - detect model misspecifications
 - multiple candidate models → decide which one is best

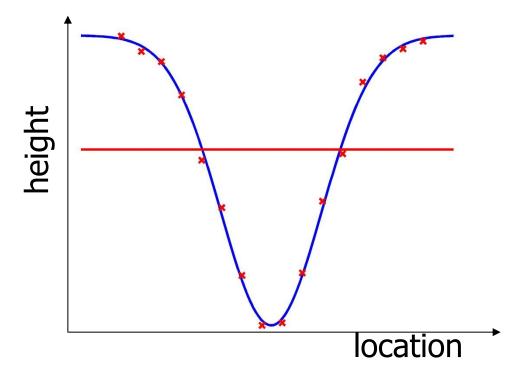
Example: outlier



Example: model misspecification

Wrong model → large residuals (difference observations and fitted model)





Statistical hypothesis testing

→ test for compliance of model and data

Two competing hypothesis:

- Null hypothesis (nominal model): ${\cal H}$

- Alternative hypothesis:

 \mathcal{H}_a

Null hypothesis presumed to be 'true' until data provide convincing evidence against it

equivalent to:

" the defendant is presumed to be innocent until proven guilty"

Project: Road deformation

$$\mathbb{E}(Y_i) = d_0 + vt_i + k \text{ GW}$$

$$\mathbb{E}(Y_i) = d_0 + R \left(1 - \exp\frac{-t_i}{a}\right) + k \text{ GW}$$

Apply non-linear least-squares
How to decide between the two models?

Enjoy...

