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Week 1.3-1.4 : Sensing and Observation Theory

Sandra Verhagen
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Where we have been, and where we are going

Number of days as function of the year

140 4 ® Observations L

. . . —— Fitted line
Identify, create, validate simple models 135 ]

Estimate uncertainty in model output given uncertain inputs

- Covariance matrix, Xy and Xy
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= Models to describe process/phenomenon of interest

140 4 ® Observations L
—— Fitted line

= Build functions more complex than a line / polynomial 15

130 4

= Fit the model to data, taking into account uncertainty

125 4

= Construct confidence intervals

120 4

= Use statistical techniques to validate models

Number of days/year [-]
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Sensing and observation

theory

= Science and engineering: need observations!
Observations - parameters of interest?
Estimation results: interpretation & uncertainty

—> Input for other engineers, decision makers, ...

]
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Do we need higher dikes?




Monitoring and Sensing: why?

]
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What sensor / observation types are used in
yvour discipline?
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discipline?
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Sensor/observation types

= camera: visible, IR, UV, hyperspectral
= radar

= radio signals

= rain gauges

= tide gauges

= stress / strain sensors

= acoustic sensors

= accelerometers

= gyroscopes

= temperature

= pressure

o
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Ingredients

model &

estimate
parameters
of interest x

Input data Y

You wil need ...

= ... amodel to describe relation between Y and x

= ... to select and apply an appropriate estimation method

- ... to apply uncertainty propagation to assess the precision of X
= ... to apply tests to assess validity of our model

%
TU Delft

Output data
X = q()
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Ingredients

Input data Y

model &
estimate
parameters

Output data
X = q()

You wil need ...

of Interest x

= ... a model to describe relation between Y and x

= ... to select and apply an appropriate estimation method

- ... to apply uncertainty propagation to assess the precision of X

= ... to apply tests to assess validity of our model

%
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random errors
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Ingredients

estimate
Input data Y parameters
of Interest x

Output data

AN

X = q(Y)

You wil need ...
.. a model to describe relation between Y and x
.. to select and apply an appropriate estimation method
.. to apply uncertainty propagation to assess the precision of X
.. to apply tests to assess validity our model

= to account for errors in data

%
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Ingredients

estimate

param eters
of interest x S _

You wil need ...

= ... amodel to describe relation between Y and x %
= ... to select and apply an appropriate estimation method

- ... to apply uncertainty propagation to assess the precision of X

= ... to apply tests to assess validity of our model

= to account for errors in data

= to choose best model from different candidates example:

change detection

%
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*  observations

Examples
Linear trend model: §
i Yl | _1 tl | i €1 | %
Y2 1 tz €2
y=1|.|=| " [a”] +1 .
: S I R :
t tm
_Ym_ _1 tm_ A : time
= Ax+ €
Unknowns:

I1 initialvalueatt =0

I2 slope

%
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Model formulation

= Observable Y . stochastic quantity (due to random errors)
—> an observable (“to be observed quantity”) has a certain probability distribution
= Observation vector y . realization of Y
—> the measured value(s)
= Parameter vector x . deterministic, but unknown
= Random errors € . stochastic with € "~ N(O, Ee)

= Functional model (linear case) ; E(Y) — A .-x o Y =A- -x + €

mXn

= Design matrix A . describes functional relationship between Y and x

%
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Part 7: Sensing and Observation
The distance = between a fixed benchmark and a moving benchmark on a landslide is measured at
timest =0,2,4,6,8,10 months. The observations are shown in the figure.

It is assumed that normally the distance is changing at a constant rate. It is known, however, that

at t = 5 months there was a sudden slip of the landslide, causing an additional change in distance at that
time.

¥

x(t) [mm]

%
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Observations y collected,
we have a functional model A,
how to estimate x?

4
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Observations y collected, we know A, how to estimate x?

for now we ignore the random errors
A linear system y = A - X

mXn

/We will consider overdetermined systems with 'ra'n,k'(A) = n<m R
Hence we have more observations than unknowns
Redundanc = 1T — N

N Y Y,

%
TUDelft
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Example of overdetermined system with rank(A) = n

3 1 1], - 4 1] - -
5 = (1 2 il 5 = [1 2 il
2 2

6 1 3l = 6 1 sje =
—~~ M~ —~~ M~ x
y A y A

| 4 3
- no solution - — _1-

—> Iin case of perfect measurements,

-i-;U Delft i.e., errors equal to 0
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Overdetermined system

Account for random errors,

otherwise generally no solution

Y1
Y2
Y3
Y4
Ys

unknowns : 2 parameters + 5 errors
but only 5 observations...
many possible solutions

%
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Overdetermined system

Account for random errors,
otherwise generally no solution

Y1 1 % €1

Y2 1 o €2
L1

ys| = |1 t3 [ az2] + | €3

Y4 1 4 €4

Y5 1 5] €5

unknowns : 2 parameters + 5 errors
but only 5 observations...
many possible solutions

'i';u Delft Least squares criterion?

Sea level (mm)

—
—
—
—

Year

w w
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What 1s the least-squares criterion?

minimize the mean of the errors

0%
‘minimize the mean of the absolute errors ]
Z ] 0%
minimize the sum of the squared errors
: ] 0%
minimize the sum of the absolute errors
f ] 0%
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What 1s the least-squares criterion?

minimize the mean of the errors

[ | 4.95%
minimize the mean of the absolute errors

[ | 11.26%
minimize the sum of the squared errors

: 77.03%
minimize the sum of the absolute errors

' 6.76%
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Quiz: what 1s the least-squares criterion?

minimize the sum of the squared errors

%
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Least-squares principle

+ Linear model: vy — Ax + €

. obective: ~ min(e’'€) = min(y — Ax)T (y — Ax)

X

Minimize the sum of squared errors (i.e., optimization problem)
= Gradient (first-order partial derivatives) =0

= Hessian (matrix with second-order partial derivatives) > 0
R —1

- Solution X = (ATA) AT Ly

]
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Least-squares solution % observations ;
Functional model: @ adjusted observations ’gz
y — AX _|_ € N I residuals (estimated errors) éz
99% confidence interval
Least squares solution
A i {
X = (ATA) Al .y --®°

Adjusted (predicted) observations: o
§ = A% X

Residuals (estimated errors):

Fa

Ezy—y Yearr

o w



Open questions

= Is least-squares the best way to estimate the parameters (fit model)?

- e.g., by taking into account the distribution of €

= what if forward model is not linear?

= quality assessment?

%
TUDelft
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Weighted Least-Squares estimation
Best Linear Unbiased estimation
Maximum Likelihood estimation
Non-linear Least Squares estimation

Quiality and testing
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Keep the application 1n mind!

Decisions to be made based on monitoring and sensing:

- can we safely continue with gas extraction / water injection/extraction / CO2 sequestration?

- do we need to build higher dikes based on sea level rise predictions / observed deformations?
- do we need to evacuate a region due to risk of landslide, volcano eruptions, tsunami, ...?

- iIs railway maintenance needed?

- is a safe underkeel clearance of ships approaching Rotterdam guaranteed?

... (etcetera etcetera etcetera)

Need proper data processing and quality assessment of the results

In this part: focus on sensing and monitoring applications

-i!U Delft Estimation principles also needed for model verification and validation,

regression analysis, machine learning g



Weighted Least-Squares estimation



monthly sea level data in Den Helder (blue) over 10 years, fitted with the trendline (red)
T T T T T ilI T T T

' . ( . [

linear trend + annual signal , |

I ‘ \ I ' : i

N

300

no
o
o

100 A |

0

Leas-squares...

Linear model:  y = Ax + € 200

‘H‘I
-300 1 1 | 1 | 1 | | |
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Objective min(e’'€) = min(y — Ax)” (y — Ax)

Sea level (mm)

~ —1
Solution: X = (ATA) AT "y
= ... treats all observations equally

= But what if observations are collected with different sensors, with different measurement precision?

» only use the observations from the best one? NO

» give different weights to the observations? YES

%
TUDelft
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Least-squares...

Linear model: v = AxX + ¢

Introduce a weight matrix W

Obijective: min (GTWG)
X

For example with a diagonal weight matrix:

W11 O €1
Wao €2 m
EWe=e1 e - €] . =Y waé
: : i=1
| O Wim| |€m]

] An observation with a larger weight is supposed to have a smaller error;
TU Delft this is considered in this minimization problem

IN
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